首页 | 本学科首页   官方微博 | 高级检索  
     

基于拟牛顿法改进的3D正态分布变换点云配准算法
引用本文:王鹏,李少达,赵雪. 基于拟牛顿法改进的3D正态分布变换点云配准算法[J]. 地理信息世界, 2017, 24(5)
作者姓名:王鹏  李少达  赵雪
作者单位:1. 成都理工大学 地球科学学院,四川 成都,610059;2. 西南交通大学 地球科学与环境工程学院,四川 成都,611756
基金项目:四川省教育厅研究基金重点项目,四川省国土资源厅科学研究计划,四川省教育厅科研项目,地球空间环境与大地测量教育部重点实验室测绘基础研究基金
摘    要:针对3D正态分布变换算法在大型场景点云数据配准时效率低的问题,提出一种基于拟牛顿法改进的3D正态分布变换算法。3D正态分布变换算法主要通过牛顿迭代法进行两视点云最优转换参数求解,但是随着待配准点云数据量的增加,牛顿迭代法需要大量的时间计算Hessian矩阵,增加了算法整体的时间复杂度。本文算法通过拟牛顿法代替牛顿法求解Hessian,改善了3D正态分布变换算法针对大型场景点云数据配准需要大量时间去计算Hessian矩阵的问题。实验表明,本文算法针对大型点云数据不仅能够保持传统3D正态分布变换算法的配准精度,还能提高配准效率。

关 键 词:拟牛顿法  Hessian矩阵  正态分布变换  配准

An Improved 3D Normal Distribution Transformation Point Cloud Registration Algorithm Based on Quasi-Newton Method
Wang Peng,Li Shaoda,Zhao Xue. An Improved 3D Normal Distribution Transformation Point Cloud Registration Algorithm Based on Quasi-Newton Method[J]. Geomatics World, 2017, 24(5)
Authors:Wang Peng  Li Shaoda  Zhao Xue
Abstract:For the problem of low registration efficient with large scene points in the 3D normal distribution transform algorithm registration process, a 3D normal distribution transform algorithm based on Quasi-Newton method is proposed. The 3D normal distribution transform algorithm mainly uses the Newton iteration method to solve the two-view cloud optimal transformation parameters. However, with the increase of the amount of data to be registered, the Newton iteration method needs a lot of time to calculate the Hessian matrix, which increases the time of the whole algorithm complexity. In this paper, Hessian is solved by the method of Quasi-Newton method, which improves the 3D normal distribution transformation algorithm. Experiments show that the algorithm can not only keep the registration precision of traditional 3D normal distribution transform algorithm, but also improve the registration efficiency for large point cloud data.
Keywords:Quasi-Newton method  Hessian matrix  normal distribution transform  registration
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号