首页 | 本学科首页   官方微博 | 高级检索  
     


Thermodynamic and pore water halogen constraints on gas hydrate distribution at ODP Site 997 (Blake Ridge)
Affiliation:1. V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia;2. Diamond and Precious Metal Geology Institute, Siberian Branch of the Russian Academy of Sciences, pr. Lenina 39, Yakutsk, 677980, Russia
Abstract:Marine sediment sequences with CH4 hydrate are characterized by an atypical depth profile in dissolved Cl squeezed from pore space: a shallow subsurface Cl maximum overlies a lengthy and pronounced Cl minimum. This pore water Cl profile represents a combination of multiple processes including glacial–interglacial variations in ocean salinity, advection and diffusion of ions that are excluded during gas hydrate formation at depth, and release of fresh water from dissociation of hydrate during core recovery. In situ quantities of gas hydrate can be determined from a measured pore water Cl profile provided the in situ pore water signature prior to core recovery can be separated. Ocean Drilling Program (ODP) Site 997 was drilled into a large CH4 hydrate reservoir on the Blake Ridge in the western Atlantic Ocean. Previously we have constructed a high-resolution pore water Cl profile at this location; here we present a `coupled chloride-hydrate' numerical model to explain basic trends in the Cl profile and to isolate in situ Cl concentrations. The model is based on thermodynamic and ecological considerations, and uses established equations for describing chemical behavior in marine sediment–pore water systems. The model incorporates four key concepts: (1) most gas hydrate is formed immediately below the SO42− reduction zone; (2) fluid, dissolved ions and gas advect upward through the sediment column; (3) CH4 hydrate dissociates at the base of hydrate stability conditions; and (4) seawater salinity fluctuates during glacial–interglacial cycles of the late Pliocene and Quaternary. Rates of upward advection in the model are sufficient to account for measured Br and I concentrations as well as CH4 oxidation at the base of the SO42− reduction zone. In situ pore water Cl inferred from the model is similar to that determined by limited direct sampling; in situ CH4 hydrate amounts inferred from the model (an average of about 4% of porosity) are broadly consistent with those determined by direct gas sampling and indirect geophysical techniques. The model also predicts production of substantial quantities of free CH4 gas bubbles (>2.5% of porosity) at a depth immediately below the lowest accumulation of CH4 hydrate in the sediment column. Our explanation for the pore water Cl profile at Site 997 is important because it provides a theoretical mechanism for understanding the distribution of interstitial water Cl, gas hydrate, and free gas in a marine sediment column.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号