The return of Pacific waters to the upper layers of the central Arctic Ocean |
| |
Affiliation: | 1. College of Oceanic and Atmospheric Sciences, Oregon State University, 104 COAS Admin. Bldg., Corvallis, OR 97331-5503, USA;2. Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, Washington, USA |
| |
Abstract: | Temperature, salinity, and chemical measurements, including the nutrients silicic acid (Si), nitrate (NO3), nitrite (NO2), ammonium (NH4), and phosphate (PO4 or P), the oxygen isotopic composition of seawater (δ18O), and barium (Ba) concentrations were obtained from the central Arctic Ocean along transects radiating from the North Pole in early spring, 2000–2006. Stations that were reoccupied over this time period were grouped into five regions: from Ellesmere Island, (1) north along 70°W and (2) northwest along 90°W; near the North Pole, (3) on the Amundsen Basin flank and (4) directly over the Lomonosov Ridge; (5) through the Makarov Basin along 170–180°W. These regions had been shown by others to have undergone marked changes in water-mass assemblies in the early 1990s, but our time series tracer hydrographic data indicate a partial return of Pacific origin water within the mixed layer and the upper halocline layers beginning in 2003–2004. Back-trajectories derived from satellite-tracked ice buoys for these stations indicate that the upper levels of Pacific water in the central Arctic in 2004–2006 transited westward from the Bering Strait along the Siberian continental slope into the East Siberian Sea before entering the Transpolar Drift Stream (TPD). By 2004, the TPD shifted back from an alignment over the Alpha-Mendeleev Ridge toward the Lomonosov Ridge, as was characteristic prior to the early 1990s. At most stations occupied in 2006, a decrease in the Pacific influence was observed, both in the mixed layer and in the upper halocline, which suggests the Canadian branch of the TPD was shifting back toward North America. Clearly the system is more variable than has been previously appreciated. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|