Calcareous inclusions in lavas and agglomerates of Santorini volcano |
| |
Authors: | Dr. I. A. Nicholls |
| |
Affiliation: | (1) Department of Geology, University of Toronto, Canada;(2) Department of Geophysics and Geochemistry, Australian National University, Canberra, ACT, Australia |
| |
Abstract: | Thermally metamorphosed and metasomatised fragments of basement actinolite-chlorite-calcite-quartz schists and quartz-bearing marbles are found as inclusions in Quaternary agglomerates and historic (197 B. C.—1950) dacitic lavas of Santorini volcano, Greece.Inclusions in agglomerates preserve the structure of parent schists in the alternation of bands rich in diopside or salite with bands rich in plagioclase. By contrast, inclusions in historic dacites are not banded. Most develop a thin zone of hybrid material at the contact with enclosing lava. The assemblage calcic clinopyroxene-wollastonite-plagioclase is commonly developed. The clinopyroxene is a Fe3+-rich salite or ferrosalite. Andradite-rich garnet and sphene are accessory minerals. Most examples carry interstitial siliceous glass of distinctive chemical composition, and several show minor olivine, augite, hypersthene and calcic plagioclase of magmatic origin.Other inclusions exhibit the assemblage anhydrite-calcic clinopyroxene, the latter mineral ranging widely in Al content. A single example has been observed to develop two distinct assemblages, the first coarsely crystalline melilite-wollastonite-magnetite, the second finely intergrown melilite-wollastonite-andraditic garnet (-xonotlite).Stability data for hedenbergite and andradite as constituents of skarn assemblages suggest that the clinopyroxene-rich assemblages of inclusions in historic dacites formed at temperatures near to or above 800° C and oxygen fugacity (fO2) considerably greater than that which could be imposed upon the inclusions by dacite magma (T 900° C, fO210–13 atm.). Thermal breakdown of original carbonates of the inclusions probably supplied the necessary oxygen.T-fO2 data for the reaction 4 Magnetite+18 Wollastonite 6 Andradite indicate that the assemblage melilite-wollastonite-magnetite of the last inclusion described formed at higher T and/or lower fO2 than the assemblage melilite-wollastonite-garnet. The latter assemblage undoubtedly formed during inclusion of the fragment by dacite magma, while metamorphism by a more basic, high temperature magma may have produced the former. Temperature data for reactions limiting the stability of melilite in the system CaO-Al2O3-SiO2-H2O indicate a minimum temperature of around 800° C for formation of both assemblages. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|