首页 | 本学科首页   官方微博 | 高级检索  
     


Evidence for chromatic X-ray light-curve breaks in Swift gamma-ray burst afterglows and their theoretical implications
Authors:A. Panaitescu,P. Mé  szá  ros,D. Burrows,J. Nousek,N. Gehrels,P. O'Brien, R. Willingale
Affiliation:Space Science and Applications, Los Alamos National Laboratory, Los Alamos, NM 87545, USA;Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802, USA;Department of Physics, Pennsylvania State University, University Park, PA 16802, USA;NASA/Goddard Space Flight Center, Greenbelt, MD 20771, USA;Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH
Abstract:The power-law decay of the X-ray emission of gamma-ray burst (GRB) afterglows 050319, 050401, 050607, 050713A, 050802 and 050922C exhibits a steepening at about 1–4 h after the burst which, surprisingly, is not accompanied by a break in the optical emission. If it is assumed that both the optical and X-ray afterglows arise from the same outflow then, in the framework of the standard forward shock model, the chromaticity of the X-ray light-curve breaks indicates that they do not arise solely from a mechanism related to the outflow dynamics (e.g. energy injection) or the angular distribution of the blast-wave kinetic energy (structured outflows or jets). The lack of a spectral evolution accompanying the X-ray light-curve break shows that these breaks do not arise from the passage of a spectral break (e.g. the cooling frequency) either. Under these circumstances, the decoupling of the X-ray and optical decays requires that the microphysical parameters for the electron and magnetic energies in the forward shock evolve in time, whether the X-ray afterglow is synchrotron or inverse-Compton emission. For a steady evolution of these parameters with the Lorentz factor of the forward shock and an X-ray light curve arising cessation of energy injection into the blast wave, the optical and X-ray properties of the above six Swift afterglows require a circumburst medium with a r −2 radial stratification, as expected for a massive star origin for long GRBs. Alternatively, the chromatic X-ray light-curve breaks may indicate that the optical and X-ray emissions arise from different outflows. Neither feature (evolution of microphysical parameters or the different origin of the optical and X-ray emissions) was clearly required by pre-Swift afterglows.
Keywords:radiation mechanisms: non-thermal    shock waves    ISM: jets and outflows    gamma-rays: bursts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号