首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of seasonal recharge beneath a semiarid vegetation on the gnangara mound,Western Australia
Authors:M L Sharma  M Bari  J Byrne
Abstract:To estimate seasonal changes in recharge to the underlying sandy aquifer, the soil water dynamics of the unsaturated zone was monitored down to a depth of 20 m over a period of three years (1985 to 1987). The measurements were made by a neutron probe at eight locations beneath a native vegetation in a semiarid region, Western Australia, receiving precipitation of 775 mm yr?1. A relatively simple method, based on the analyses of sequentially measured soil water profiles involving utilization of zero flux plane in the unsaturated zone, is presented and used to compute seasonal recharge rates. Drainage fluxes (recharge rates) below two specified depths were estimated. These were: R1 (water flux at a depth of 10 m, just below the maximum rooting depth) and R2 (water flux at a depth of 18 m, just above the water table). These two estimates were significantly different both on a seasonal and annual basis, but their cumulative values for the three year period were very similar. While the annual precipitation varied from 525 to 850 mm yr?1, the corresponding spatially averaged R1 varied from 34 to 149 mm yr?1, and R2 varied from 65 to 80 mm yr?1. A significant difference in recharge between the upslope and downslope positions on a hillslope was ascribed to differences in vegetation density of the understorey and differences in hydraulic properties of subsoils. For the three year period, the average R1 and R2 were 13 per cent and 10 per cent of the precipitation respectively. These values compare favourably with a long-term estimate based on an environmental tracer technique.
Keywords:Vertical water flux  Seasonal dynamics  Water dynamics  Water balance Recharge
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号