首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fracture detection and groundwater flow characterization using He and Rn in soil gases,Manitoba, Canada
Institution:2. Géosciences Rennes (UMR CNRS 6118)-OSUR, University of Rennes 1, Rennes, France;3. University of Mons, Department of Geology and Applied Geology, Mons, Belgium;4. Ruhr-Universität Bochum, Geology, Mineralogy and Geophysics, Bochum, Germany
Abstract:Surveys of the distribution and migration of He and Rn were carried out in the well-characterized granitic terrane of the AECL Underground Research Laboratory (URL), Manitoba as part of a joint AECL Research, United Kingdom Department of the Environment, and United States Department of Energy research initiative. The investigations were designed to determine whether concentrations of He and Rn in soil gases could be used to identify locations of groundwater recharge and discharge from bedrock fractures. The results obtained indicate that subsurface transport of He and possibly Rn in this setting appears to be controlled largely by the groundwater flow system in the bedrock. Release of dissolved gases near the ground surface causes soil gas anomalies, which reflect discharge from the deeper flow system. In the recharge area of the deep groundwater flow system at the URL site, He abundances are close to the atmospheric level, but the discharge area of the deep flow system is characterized by significant He anomalies (up to 0.5 ppm above atmosphere levels). For Rn, the recharge area has broadly distributed high concentrations, probably caused by local Rn production in U-rich overburden, while the discharge area has only localized concentrations of Rn, which are not at the same location as the He anomalies. The general nature of the groundwater flow regime in both areas is reflected in the presence and distribution of the soil gas anomalies. In addition, major fractures in bedrock, which act as preferential groundwater flow paths, have been located from soil gas anomalies, even when obscured by overburden of variable thickness and character. The distribution of He in soil gas appears to be most representative of groundwater recharge and discharge conditions in the granitic rock, while Rn may be useful for locating specific channels where more rapid groundwater discharge is occurring from deep fracture zones.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号