首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of matrix grain size on the kinetics of intergranular diffusion
Authors:W D Carlson  C L Gordon
Institution:Department of Geological Sciences, University of Texas at Austin, Austin, TX 78712, USA ()
Abstract:A linear relationship exists between the mean volume of garnet porphyroblasts and the squared inverse of mean matrix grain diameter for six samples of garnetiferous mica quartzite with identical thermal histories and similar mineralogy and modes. This relationship accords with theoretical predictions of the dependence of intergranular diffusive fluxes on the volume fraction of grain edges that function as diffusional pathways during porphyroblast growth. The impact of matrix grain size is large: compared to a rock with a 1‐mm matrix, a rock with a 10‐μm matrix would experience rates of diffusion‐controlled porphyroblast growth that are 10 000 times faster, and characteristic length scales for chemical equilibration that are 100 times larger. Precursor grain sizes may therefore exert a major influence on crystallization kinetics. If matrix coarsening occurs during prograde reaction, a decrease in the volume fraction of diffusional pathways will tend to counteract the exponential thermal increase in diffusive fluxes. The impact of such matrix grain growth, although difficult to assess without firm knowledge of coarsening rates in polymineralic aggregates, might be significant for matrices finer than c. 100 μm at temperatures above c. 500–600 °C, but is likely negligible for coarser grain sizes and lower temperatures.
Keywords:garnet  grain growth  intergranular diffusion  kinetics  porphyroblast
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号