首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Reduced order models for many-query subsurface flow applications
Authors:George Shu Heng Pau  Yingqi Zhang  Stefan Finsterle
Institution:1. Lawrence Berkeley National Laboratory 1, Cyclotron Road, Mail Stop 74-0120, Berkeley, CA, 94720, USA
Abstract:Inverse modeling involves repeated evaluations of forward models, which can be computationally prohibitive for large numerical models. To reduce the overall computational burden of these simulations, we study the use of reduced order models (ROMs) as numerical surrogates. These ROMs usually involve using solutions to high-fidelity models at different sample points within the parameter space to construct an approximate solution at any point within the parameter space. This paper examines an input–output relational approach based on Gaussian process regression (GPR). We show that these ROMs are more accurate than the linear lookup tables with the same number of high-fidelity simulations. We describe an adaptive sampling procedure that automatically selects optimal sample points and demonstrate the use of GPR to a smooth response surface and a response surface with abrupt changes. We also describe how GPR can be used to construct ROMs for models with heterogeneous material properties. Finally, we demonstrate how the use of a GPR-based ROM in two many-query applications—uncertainty quantification and global sensitivity analysis—significantly reduces the total computational effort.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号