首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comprehensive physicochemical study of dioctahedral palygorskite-rich clay from Marrakech High Atlas (Morocco)
Authors:Benaissa Rhouta  Ezzouhra Zatile  Lahcen Bouna  Omar Lakbita  Francis Maury  Lahcen Daoudi  Marie Christine Lafont  M’Barek Amjoud  François Senocq  Amane Jada  Ahmed Aït Aghzzaf
Institution:1. Laboratoire de Matière Condensée et Nanostructures (LMCN), Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
2. CIRIMAT, CNRS-UPS-INP, ENSIACET, 4 allée Emile Monso, BP 44362, 31030, Toulouse Cedex 4, France
3. Laboratoire de Géosciences et Géoenvironnement, Faculté des Sciences et Techniques Guéliz, Université Cadi Ayyad, BP 549, Marrakech, Morocco
4. Institut de Sciences des Matériaux de Mulhouse IS2?M LRC 7228, CNRS, 15 rue jean Starcky BP 2488, 68057, Mulhouse Cedex, France
Abstract:This study is devoted to the physicochemical and mineralogical characterizations of palygorskite from Marrakech High Atlas, Morocco. The raw clay and its Na+-saturated <2 μm fraction were characterized using chemical, structural, and thermal analytical techniques. Measurements of specific surface area and porous volume are reported. The clay fraction was found to be made up of 95 % of palygorskite and 5 % of sepiolite. An original feature of this palygorskite is its deficiency in zeolitic H2O. The half-cell structural formula of its dehydrated form was determined on the basis of 21 oxygens to be (Si7.92Al0.08)(Mg2.15Al1.4Fe0.4Ti0.05 $ \square_{1} $ )(Ca0.03Na0.08K0.04)O21, while the hydrated form could be formulated as (Si7.97Al0.03)(Mg2.17Al1.46Fe0.40Ti0.05)(Ca0.03Na0.07K0,03)O20.18(OH)1.94(OH2)3.88·2.43 H2O. These formulas show that the (Al3++Fe3+)/Mg2+ ratio is around 0.84, revealing a pronounced dioctahedral character. Further, inside its octahedral sheet, it was determined that the inner M1 sites are occupied by vacancies, whereas the M2 sites are shared between 90 % of trivalent cations (78 % for Al3+ and 22 % for Fe3+), 7.5 % of Mg2+, and 2.5 % of Ti4+, all of them linked to 1.94 of structural hydroxyls. The two remaining Mg2+ by half-cell occupy edge M3 sites and are coordinated to 3.88 molecules of OH2. Channels of this palygorskite are deficient in zeolitic H2O since they contain only 2.43 H2O molecules. A correlation was found between these results and the observation of very intense and well-resolved FTIR bands arising from dioctahedral domains (mainly Al2OH, Fe2OH, and AlFeOH) along with very small responses from a trioctahedral domain (Mg3OH). Accordingly, a schematic representation of the composition of the octahedral sheet was proposed. The cation exchange capacity, specific surface area, and total pore volume were also assessed to be ca. 21.2 meq/100 g, 116 m2/g, and 0.458 cm3/g, respectively.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号