首页 | 本学科首页   官方微博 | 高级检索  
     

剖面形态自适应的海岸线遥感推算方法
引用本文:沙宏杰,张东,崔丹丹,等. 剖面形态自适应的海岸线遥感推算方法[J]. 海洋学报,2019,41(9):170–180,doi:10.3969/j.issn.0253−4193.2019.09.016
作者姓名:沙宏杰  张东  崔丹丹  吕林  倪鹏
作者单位:1.南京师范大学 地理科学学院,江苏 南京 210023;;2.南京师范大学 海洋科学与工程学院,江苏 南京 210023;;3.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023;;4.江苏省海域使用动态监视监测中心,江苏 南京 210003
基金项目:国家自然科学基金项目(41771447);江苏省海洋科技创新专项项目(HY2018-3)。
摘    要:淤泥质海岸冲淤变化大,岸滩剖面形态多样。本文首先根据多时相遥感水边线之间的潮差关系自动判断岸滩剖面形态,进而分别采用不同的函数进行剖面拟合,构建了一种剖面形态自适应的海岸线遥感推算新方法,并在江苏中部淤泥质海岸进行了实证应用。研究表明:下凹形侵蚀岸段、斜坡形平缓岸段和上凸形淤长岸段分别采用三指数衰减函数、线性函数和二阶多项式函数具有良好的剖面拟合效果,利用3条水边线数据拟合所得剖面平均坡度绝对误差分别为0.20‰、–0.17‰和0.13‰,小于剖面实测平均坡度一个数量级。利用5条水边线数据拟合进行海岸线推算时,侵蚀岸段、平缓岸段的海岸线平面位置误差分别为6.5 m和–91.96 m,与平均坡度法相比,误差减小约82.4%。进一步考虑岸滩季节性变化时,使用冬季的水边线数据推算海岸线,对侵蚀岸段和淤长岸段影响不大,但对斜坡形平缓岸段,误差减小约63.65%,因此使用冬季的水边线数据比不区分季节具有更高的海岸线推算精度。

关 键 词:剖面形态   自适应   海岸线   遥感   季节性变化
收稿时间:2018-09-06
修稿时间:2018-12-06

Remote sensing prediction method of coastline based on self-adaptive profile morphology
Sha Hongjie,Zhang Dong,Cui Dandan, et al. Remote sensing prediction method of coastline based on self-adaptive profile morphology[J]. Haiyang Xuebao,2019, 41(9):170–180,doi:10.3969/j.issn.0253−4193.2019.09.016
Authors:Sha Hongjie  Zhang Dong  Cui Dandan  Lü Lin  Ni Peng
Affiliation:1. Department of Geography, Nanjing Normal University, Nanjing 210023, China;;2. College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China;;3. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China;;4. Sea Area Use Dynamic Surveillant and Monitoring Center of Jiangsu Province, Nanjing 210003, China
Abstract:The muddy coast has a large change in scouring and silting, and the beach profile is diverse. Firstly, according to the tidal range relationship between muti-temporal remote sensing watelines, the shape of the shoreline is automatically judged, and then the different functions are used to fit the profile. A new method of coastline remote sensing prediction based on self-adaptive profile morphology is constructed. The central muddy coast in Jiangsu has been empirically applied. The research shows that the concave-shaped erosion shore section, the slope-shaped gentle bank section and the upper convex-shaped siltation section use a three-exponential decay function, a linear function and a second-order polynomial function respectively to have a good profile fitting effect, using three waterlines. The absolute slope error of the profile obtained by data fitting is 0.20‰, –0.17‰, and 0.13‰, respectively, which is less than an order of magnitude than the measured average slope. When using the five waterlines data fitting to calculate the coastline, the error of the coastline plane position of the erosion shore section and gentle shore section are 6.5 m and –91.96 m, respectively, and the error is reduced by about 82.4% compared with the average slope method. Further consideration of seasonal changes in the beach, using the waterline data of the winter to calculate the coastline, has little effect on the erosion of the shore and the long section of the silt, but for the slope-shaped smooth section, the error is reduced by about 63.65%, so the use of winter waterline data has a higher shoreline projection accuracy than the season without distinction.
Keywords:profile morphology  self-adaption  coastline  remote sensing  seasonal variation
本文献已被 万方数据 等数据库收录!
点击此处可从《海洋学报》浏览原始摘要信息
点击此处可从《海洋学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号