Petrography, chemistry and genesis of phosphorite concretions in the Eocene Umm Rijam Chert limestone Formation, Ma'an area, south Jordan |
| |
Authors: | Khalid Tarawneh Khaled Moumani |
| |
Affiliation: | aFaculty of Mining and Environmental Engineering, Al Hussein Bin Talal University, P.O. Box 20, Ma'an, Jordan;bNatural Resources Authority, Geology Directorate, Geological Mapping Division, P.O. Box 7, Amman, Jordan |
| |
Abstract: | Phosphorite concretions are recorded for the first time within the lower part of the Umm Rijam Chert Limestone Formation (Eocene) in the Ma'an area, southern Jordan. The phosphorite concretions are typically hosted and encountered as individual layer in moderately lithified sediments of marl, chalk and chalky marl. The phosphorite concretions are present in thin layer (10–30 cm thick). They are localized on a hardground surface that formed as a result of cementation of soft ground by bioclastic materials. Light grey and brownish to black colors are encountered with isometric, ellipsoid, elongated, subangular to subrounded phosphorite concretions (up to 6 cm in length). Most of the phosphorite concretions preserve bioturbation structures; they also include fecal pellets of various sizes. The main biogenic components are fragments of macrofossils (bivalves) and microfossils (planktonic foraminifera) in different proportions. Petrographic examinations reveal that the phosphorite concretions are composed of cryptocrystalline apatite that characteristically appears in cross-polarized light almost as isotropic phosphate and minor anisotropic phosphate. Apatite and calcite are the main mineral constituents of the phosphorite concretions identified by XRD. The apatite is identified as francolite (carbonate-flour-apatite). Chemical analyses of the phosphorite concretions using X-ray florescence indicate that the P2O5 content ranges from 18.8 to 31.19%, whereas SEM–EDS analyses indicate that the phosphorus proportion is around 14% by volume. It could be argued that the phosphorite concretions were transported after being reworked, or were derived from carbonate and chalk pebbles that were later phosphatized and subjected to erosion, forming residual lag deposit along the hardground surface. |
| |
Keywords: | Eocene Phosphate Concretions Jordan |
本文献已被 ScienceDirect 等数据库收录! |
|