首页 | 本学科首页   官方微博 | 高级检索  
     


The influence of lateral mixing on a phytoplankton bloom: Distribution in the Kerguelen Plateau region
Authors:Claire Maraldi  Mathieu Mongin  Richard Coleman  Laurent Testut
Affiliation:1. LEGOS, 14 Avenue Edouard Belin, 31400 Toulouse, France;2. Antarctic Climate and Ecosystems CRC, Private Bag 80, TAS 7001 Hobart, Australia;3. Centre for Marine Science, University of Tasmania, Private Bag 78, TAS 7001 Hobart, Australia;4. CSIRO Marine and Atmospheric Research, GPO Box 1538, TAS 7001 Hobart, Australia
Abstract:A unique phytoplankton bloom appears every year during the austral spring/summer in the northern Kerguelen Plateau region. The Kerguelen Ocean and Plateau compared Study (KEOPS) showed that an increase in subsurface iron coming up from the seafloor through vertical mixing was responsible for the observed increase in chlorophyll-a above the plateau. We demonstrate that the bloom pattern is not a simple increase of biomass over shallow water: it is strongly influenced by the bathymetry and its spatial extent controlled by strong currents around the plateau. Here we focus on lateral mixing process to explain the particular shape of the bloom. We use the Smagorinsky [1963. General circulation experiments with the primitive equations. I. The basic experiment. Monthly Weather Review 91 (3), 99–164] formula to estimate and map fields of lateral mixing time scales (τ) due to barotropic tidal currents, barotropic atmospheric forced currents, Ekman velocities and geostrophic velocities. Results show that short time scale mixing is strongly influenced by the tides while the other processes have minor influences. Comparisons of τ and satellite chlorophyll-a images show that the spatial pattern of the bloom seems to be delimited by a barrier of high lateral mixing that is essentially due to tides. This emphasises the role played by the tides over the Kerguelen Plateau in supplying iron to the phytoplankton and containing the horizontal shape of the bloom. This is one of the first times such a link has been demonstrated, which has implications for the study of iron advection in the ocean.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号