首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Grain coarsening in contact metamorphic carbonates: effects of second-phase particles, fluid flow and thermal perturbations
Authors:A Berger  M Herwegh
Institution:Institute of Geological Sciences, University of Bern, Baltzerstr. 1, CH-3012 Bern, Switzerland ()
Abstract:Under contact metamorphic conditions, carbonate rocks in the direct vicinity of the Adamello pluton reflect a temperature‐induced grain coarsening. Despite this large‐scale trend, a considerable grain size scatter occurs on the outcrop‐scale indicating local influence of second‐order effects such as thermal perturbations, fluid flow and second‐phase particles. Second‐phase particles, whose sizes range from nano‐ to the micron‐scale, induce the most pronounced data scatter resulting in grain sizes too small by up to a factor of 10, compared with theoretical grain growth in a pure system. Such values are restricted to relatively impure samples consisting of up to 10 vol.% micron‐scale second‐phase particles, or to samples containing a large number of nano‐scale particles. The obtained data set suggests that the second phases induce a temperature‐controlled reduction on calcite grain growth. The mean calcite grain size can therefore be expressed in the form D = C2 eQ*/RT(dp/fp)m*, where C2 is a constant, Q* is an activation energy, T the temperature and m* the exponent of the ratio dp/fp, i.e. of the average size of the second phases divided by their volume fraction. However, more data are needed to obtain reliable values for C2 and Q*. Besides variations in the average grain size, the presence of second‐phase particles generates crystal size distribution (CSD) shapes characterized by lognormal distributions, which differ from the Gaussian‐type distributions of the pure samples. In contrast, fluid‐enhanced grain growth does not change the shape of the CSDs, but due to enhanced transport properties, the average grain sizes increase by a factor of 2 and the variance of the distribution increases. Stable δ18O and δ13C isotope ratios in fluid‐affected zones only deviate slightly from the host rock values, suggesting low fluid/rock ratios. Grain growth modelling indicates that the fluid‐induced grain size variations can develop within several ka. As inferred from a combination of thermal and grain growth modelling, dykes with widths of up to 1 m have only a restricted influence on grain size deviations smaller than a factor of 1.1. To summarize, considerable grain size variations of up to one order of magnitude can locally result from second‐order effects. Such effects require special attention when comparing experimentally derived grain growth kinetics with field studies.
Keywords:carbonates  contact metamorphic aureole  crystal growth  crystal size distribution  growth modelling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号