首页 | 本学科首页   官方微博 | 高级检索  
     


Distance least squares modelling of the cubic sodalite structure and of the thermal expansion of Na8(Al6Si6O24)I2
Authors:M. J. Dempsey  D. Taylor
Affiliation:1. Department of Geology, The University, M13 9PL, Manchester, England
Abstract:The Distance Least Squares (DLS) structure modelling technique is used to determine the room-temperature structures of the sodalites Li8(Al6Si6O24)Cl2, Na8(Al6Si6O24)Cl2, K8(Al6Si6O24)Cl2, Na8(Al6Si6O24)Br2, and Na8(Al6Si6O24)I2. The technique is also used to calculate the thermal expansion behaviour of Na8(Al6Si6O24)I2 assuming that the discontinuity in its thermal expansion curve occurred either when the ideal fully-expanded state was achieved (case 1) or when the x-coordinate of the sodium atom became 0.25 (case 2). The results are given as plots of bond lengths and bond angles as a function of temperature. Case 2 was preferred and analysis of the results implied that the driving force for the untwisting of the partially-collapsed sodalite framework was in the framework bonds with the cavity ion bonds resisting the untwisting. Best estimates indicate that the expansion of the Na-O and Na-I bonds are 9% and 27.4% respectively, between room temperature and 810° C, and there is an apparent shortening of the framework bond distances of about 1.5%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号