Abstract: | Calibration of seismic reflectors appearing in the crust of the Chinese continent sci- entific drilling site can be completed through the correlation studies between direct evidences, such as the drill cores, and geophysical signatures; therefore the interpretation of geophysical data could produce reliable results of crustal structure and composition. On the other hand, there are two Cenozoic volcanoes close to the scientific drilling site; analyzing composition of xenoliths existent in the volcanoes and evaluating their seismic velocities can also offer information about the mantle and lower crust. After the calibration via cores and well-logging data, the seismic re- flectors appearing in the UHP belt can be caused by lithological changes within the UHP rock slice, ductile shearing rock-suites, and later fracture zones. Among these sources, ductile shearing resulted in displacement and detachment of original rock-sheets, producing some rock-interbeds of several hundred meters thick that are named the ductile shearing rock-suites. A suite consists of mylonized gneiss and eclogite slices that underwent shearing, becoming the major mechanism responsible to generate regional strong reflections. The UHP rock-slice is characterized by complicated structures and high density, high seismic velocity and high electri- cal resistivity, its thickness is usually less than 11 km. Velocity and density of the gneiss-layer beneath gradually tend to normal with increasing depth. Based on the xenoliths we can infer that the middle crust contains a lot of gneisses, and the lower crust consists of different granulites. The lithospheric mantle has multi-layer structures and consists mainly of spinal lherzolite and harzburgite, implying late Mesozoic lithospheric thinning. The seismic fabrics with different ori- gins were possible products of different geodynamic processes. For instance, the UHP rock-slice was produced by the UHP metamorphic process and the exhumation of subducted supercrustal rocks after the Triassic collision between the Yangtze and Sino-Korean cratons; whilst the ductile shearing rock-suites resulted from shearing deformation processes during the subduction and exhumation. The normal velocity below the UHP rock-slice was correlated with Mesozoic exten- sion processes in the area. Through careful calibration of seismic reflectors and analyzing xeno- liths, one can find the relationship between the causes of seismic reflectors and corresponding geodynamic processes, offering a new basis for reconstruction of regional dynamic evolution history. |