首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A Hybrid BE-GS Method for Modeling Regional Wave Propagation
Authors:L-Y Fu  R-S Wu
Institution:(1) Institute of Tectonics, University of California, 1156 High St., Santa Cruz, CA 95064, USA;(2) Shell Exploration and Production Technology Company, 3747 Bellaire Blvd., Houston, TX 77025, USA
Abstract:—?We present a hybrid boundary-element (BE) and generalized screen propagator (GSP) method for the 2-D SH problem to model the combined effects of arbitrarily irregular topography, large-scale crustal variation, and the associated small-scale heterogeneities on regional wave propagation. We develop a boundary connection technique to couple the wave fields calculated by the BE method with those of the GSP method. Its validity is tested by numerical experiments. For a long crustal waveguide, the relatively short sections with severe surface topography can be modeled by the time-consuming BE method to high frequencies, and the exterior field in the relatively weak heterogeneous media of large volume can be calculated by the GSP method. For the waveguide with severe topography, the BE method can be used section by section via the boundary connection technique to model the combined effects of rough topography and large-scale structural variation on Lg wave propagation at extended regional distances.¶Numerical comparisons with independent methods showed that the hybrid method is relatively accurate for Lg simulation. We apply the hybrid method to Lg wave propagation in two real crustal waveguides in the Tibet region; one with Lg blockage and another without blockage. We found that the most characteristic effect from the irregular topography is the strong scattering by the topographic structures. The scattering by local irregular topographies leads to anomalous near-receive effects and tends to remove energy from the guided waves, which causes decay of amplitude and waveform distortion. It can be expected that rough surface topography and random heterogeneities with scale length close to the dominant wavelength will be very efficient in attenuating regional waves. The dramatic lateral variation of the topography-Moho large-scale structure combined with the small-scale rough topography and random heterogeneities could be the cause of Lg anomalous attenuation and blockage observed in this region. More quantitative assessment of the topographic effects must be conducted in the future.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号