首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Redox potential (Eh) and anion effects of pyrite (FeS2) leaching at pH 1
Authors:Anand P Chandra  Andrea R Gerson
Institution:Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia
Abstract:Pyrite plays the central role in the environmental issue of acid rock drainage. Natural weathering of pyrite results in the release of sulphuric acid which can lead to further leaching of heavy and toxic metals from other associated minerals. Understanding how pyrite reacts in aqueous solution is critical to understanding the natural weathering processes undergone by this mineral. To this end an investigation of the effect of solution redox potential (Eh) and various anions on the rate of pyrite leaching under carefully controlled conditions has been undertaken.Leaching of pyrite has been shown to proceed significantly faster at solution Eh of 900 mV (SHE) than at 700 mV, at pH 1, for the leach media of HCl, H2SO4 and HClO4. The predominant effect of Eh suggests electrochemical control of pyrite leaching with similar mechanism(s) at Eh of 700 and 900 mV albeit with different kinetics. Leach rates at 700 mV were found to decrease according to HClO4 > HCl > H2SO4 while at 900 mV the leach rate order was HCl > HClO4 > H2SO4. Solution Fe3+ activity is found to continually increase during all leaches; however, this is not accompanied by an increase in leach rate.Synchrotron based photoemission electron microscopy (PEEM) measurements showed a localised distribution of adsorbed and oxidised surface species highlighting that pyrite oxidation and leaching is a highly site specific process mediated by adsorption of oxidants onto specific surface sites. It appears that rates may be controlled, in part, by the propensity of acidic anions to bind to the surface, which varies according to View the MathML source, thus reducing the reactive or effective surface area. However, anions may also be involved in specific reactions with surface leach products. Stoichiometric dissolution data (Fe/S ratio), XPS and XRD data indicate that the highest leach rates (in HCl media at 900 mV Eh) correlate with relatively lower surface S abundance. Furthermore, there are indications that solution Cl assists oxidation especially at higher Eh through the prevention of surface S0 buildup at reactive surface sites.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号