首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Iron and manganese diagenesis in deep sea volcanogenic sediments and the origins of pore water colloids
Authors:WB Homoky  DJ Hembury  RA Mills  GR Fones
Institution:a National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, UK
b School of Earth and Environmental Sciences, University of Portsmouth, Portsmouth PO1 3QL, UK
Abstract:Volcanogenic sediments are typically rich in Fe and Mn-bearing minerals that undergo substantial alteration during early marine diagenesis, however their impact on the global biogeochemical cycling of Fe and Mn has not been widely addressed. This study compares the near surface (0-20 cm below sea floor cmbsf]) aqueous (<0.02 μm) and aqueous + colloidal here in after ‘dissolved’ (<0.2 μm) pore water Fe and Mn distributions, and ancillary O2(aq), View the MathML source and solid-phase reactive Fe distributions, between two volcanogenic sediment settings: 1] a deep sea tephra-rich deposit neighbouring the volcanically active island of Montserrat and 2] mixed biosiliceous-volcanogenic sediments from abyssal depths near the volcanically inactive Crozet Islands archipelago. Shallow penetration of O2(aq) into Montserrat sediments was observed (<1 cmbsf), and inferred to partially reflect oxidation of fine grained Fe(II) minerals, whereas penetration of O2(aq) into abyssal Crozet sediments was >5 cmbsf and largely controlled by the oxidation of organic matter. Dissolved Fe and Mn distributions in Montserrat pore waters were lowest in the surface oxic-layer (0.3 μM Fe; 32 μM Mn), with maxima (20 μM Fe; 200 μM Mn) in the upper 1-15 cmbsf. Unlike Montserrat, Fe and Mn in Crozet pore waters were ubiquitously partitioned between 0.2 μm and 0.02 μm filtrations, indicating that the pore water distributions of Fe and Mn in the (traditionally termed) ‘dissolved’ size fraction are dominated by colloids, with respective mean abundances of 80% and 61%. Plausible mechanisms for the origin and composition of pore water colloids are discussed, and include prolonged exposure of Crozet surface sediments to early diagenesis compared to Montserrat, favouring nano-particulate goethite formation, and the elevated dissolved Si concentrations, which are shown to encourage fine-grained smectite formation. In addition, organic matter may stabilise authigenic Fe and Mn in the Crozet pore waters. We conclude that volcanogenic sediment diagenesis leads to a flux of colloidal material to the overlying bottom water, which may impact significantly on deep ocean biogeochemistry. Diffusive flux estimates from Montserrat suggest that diagenesis within tephra deposits of active island volcanism may also be an important source of dissolved Mn to the bottom waters, and therefore a source for the widespread hydrogenous MnOx deposits found in the Caribbean region.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号