首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Metamorphic growth and recrystallization of zircons in extremely O-depleted rocks during eclogite-facies metamorphism: Evidence from U-Pb ages, trace elements, and O-Hf isotopes
Authors:Yi-Xiang Chen  Ren-Xu Chen  Qiuli Li  Lu Chen
Institution:a CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
b State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
c State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China
d State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430076, China
Abstract:A combined in situ SIMS and LA-(MC)-ICPMS study of U-Pb ages, trace elements, O and Lu-Hf isotopes was conducted for zircon from eclogite-facies metamorphic rocks in the Sulu orogen. The two microbeam techniques sampled various depths of zircon domains, revealing different element and isotope relationships between residual magmatic cores and new metamorphic rims and thus the geochemical architecture of metamorphic zircons which otherwise cannot be recognized by the single microbeam technique. This enables discrimination of metamorphic growth from different subtypes of metamorphic recrystallization. Magmatic cores with U-Pb ages of 769 ± 9 Ma have positive δ18O values of 0.1-10.1‰, high Th/U and 176Lu/177Hf ratios, high REE contents, and steep MREE-HREE patterns with negative Eu anomalies. They are interpreted as crystallizing from positive δ18O magmas during protolith emplacement. In contrast, newly grown domains have concordant U-Pb ages of 204 ± 4 to 252 ± 7 Ma and show negative δ18O values of −10.0‰ to −2.2‰, low Th/U and 176Lu/177Hf ratios, low REE contents, and flat HREE patterns with weak to no Eu anomalies. They are interpreted as growing from negative δ18O fluids that were produced by metamorphic dehydration of high-T glacial-hydrothermally altered rocks during continental subduction-zone metamorphism. Differences in δ18O between different domains within single grains vary from 0.8‰ to 12.5‰, suggesting different degrees of O isotope exchange between the positive δ18O magmatic core and the negative δ18O metamorphic fluid during the metamorphism. The magmatic zircons underwent three subtypes of metamorphic recrystallization, depending on their accessibility to negative δ18O fluids. The zircons recrystallized in solid-state maintained positive δ18O values, and REE and Lu-Hf isotopes of protolith zircon, but their U-Pb ages are lowered. The zircons recrystallized through dissolution exhibit negative δ18O values similar to the metamorphic growths, almost completely reset U-Pb ages, and partially reset REE systems. The zircons recrystallized through replacement show variably negative δ18O values, and partially reset REE, and U-Pb and Lu-Hf isotopic systems. Therefore, this study places robust constraints on the origin of metamorphic zircons in eclogite-facies rocks and provides a methodological framework for linking the different types of metamorphic zircons to petrological processes during continental collision.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号