首页 | 本学科首页   官方微博 | 高级检索  
     


Finite-frequency sensitivity of body waves to anisotropy based upon adjoint methods
Authors:Anne Sieminski  Qinya Liu  Jeannot Trampert   Jeroen Tromp
Affiliation:Department of Earth Sciences, Utrecht University, PO Box 80021, TA 3058;Utrecht, the Netherlands. E-mail: Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125,;USA
Abstract:We investigate the sensitivity of finite-frequency body-wave observables to mantle anisotropy based upon kernels calculated by combining adjoint methods and spectral-element modelling of seismic wave propagation. Anisotropy is described by 21 density-normalized elastic parameters naturally involved in asymptotic wave propagation in weakly anisotropic media. In a 1-D reference model, body-wave sensitivity to anisotropy is characterized by 'banana–doughnut' kernels which exhibit large, path-dependent variations and even sign changes. P -wave traveltimes appear much more sensitive to certain azimuthally anisotropic parameters than to the usual isotropic parameters, suggesting that isotropic P -wave tomography could be significantly biased by coherent anisotropic structures, such as slabs. Because of shear-wave splitting, the common cross-correlation traveltime anomaly is not an appropriate observable for S waves propagating in anisotropic media. We propose two new observables for shear waves. The first observable is a generalized cross-correlation traveltime anomaly, and the second a generalized 'splitting intensity'. Like P waves, S waves analysed based upon these observables are generally sensitive to a large number of the 21 anisotropic parameters and show significant path-dependent variations. The specific path-geometry of SKS waves results in favourable properties for imaging based upon the splitting intensity, because it is sensitive to a smaller number of anisotropic parameters, and the region which is sampled is mainly limited to the upper mantle beneath the receiver.
Keywords:adjoint methods    body waves    Fréchet derivatives    seismic anisotropy    sensitivity    shear-wave splitting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号