首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical modelling of orogenic processes and gold mineralisation in the southeastern part of the Yilgarn Craton,Western Australia
Authors:P Sorjonen-Ward  Y Zhang  C Zhao
Institution:Australian Geodynamic Cooperative Research Centre, CSIRO Exploration and Mining , Australian Resources Research Centre , PO Box 1130, Bentley, WA, 6102, Australia
Abstract:We use numerical modelling codes to simulate aspects of some current hypotheses for the origin of gold deposits and hydrothermal systems in the Yilgarn Craton of Western Australia. In particular, we investigate conceptual models advocating vertically continuous hydrothermal systems as well as those invoking extensive lateral flow and possible links with advection of heat by late orogenic granitic magmatism. Numerical models of part of the Eastern Goldfields Province and Southern Cross Province have been built with FLAC3D, to simulate crustal‐scale coupled interaction between deformation and fluid flow. These illustrate the potential for fluid focusing and mixing in shear zones, including downflow of meteoric water, lateral fluid flow driven by topographic elevation and upwards flow of fluids derived from melting and metamorphism in the deep crust. In some cases, downflow also occurs within the middle crust, at depths where fluid influx might trigger melting if the geothermal gradient were appropriate. The models indicate that tectonic wedging within a layered crust and diverging thrust systems that generate ‘pop‐up’ wedges may be important in facilitating efficient fluid upflow and downflow during uplift, while topographic elevation related to asymmetric thrust migration and loading tends to promote lateral fluid flow. However, the effect of topography appears more important than the precise depth or location of the site of fluid production in the deep crust. The effects of thermal convection and fluid‐fluid interaction have also been numerically modelled for a simplified section across the Kalgoorlie Terrane. Modelling under both hydrostatic and lithostatically overpressured pore‐pressure gradients has effectively delineated domains of convective fluid flow within the middle and upper crust, and has identified two generic sites that are favourable for fluid mixing, notably hangingwall and footwall environments in major shear zones, such as the Bardoc Shear, and in broad antiforms, such as the Goongarrie ‐ Mt Pleasant Antiform. The thermal effect of small plutons embedded in a regional metamorphic regime can cause significant lateral displacement of fluid convection patterns, over distances greater than pluton diameter, as well as more proximal effects on precipitation and dissolution of mineral species. However, these results are highly dependent on the pore‐pressure gradient and the permeability structure of the crust, and require magmatic and metamorphic fluid generation to be precisely timed with respect to deformation, thus reinforcing the dynamic feedback between deformation, magmatism and fluid production and migration.
Keywords:convection  deformation  fluids  gold  granite  mineralisation  numerical modelling  Yilgarn Craton
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号