Cosmogenic neon in ultramafic nodules from Asia and in quartzite from Antarctica |
| |
Authors: | Thomas Staudacher,Claude J. All gre |
| |
Affiliation: | Thomas Staudacher,Claude J. Allègre |
| |
Abstract: | We have performed systematic analyses of both cosmogenic 3He (3Hec) and cosmogenic 21Ne (21Nec) in ultramafic xenoliths from Central Asia and in a quartz sample from Antarctica. Five xenoliths, which show no or insignificant 21Nec excesses, were used to estimate the initial 4He/3He ratio of 90,470 in the subcontinental lithospheric mantle under the Baikal extension zone. Seven xenoliths show large 21Ne/22Ne anomalies ranging up to 0.204 and 4He/3He down to 31,000, due to the presence of cosmogenic 21Ne and 3He. The (3He/21Ne)c ratio is 1.41 ± 0.22 in the xenoliths and 2.76 in the quartzite. This difference is due to the dependence of the 21Nec production rate on the elemental composition of the target material. We estimated the 3Hec and 21Nec production rates at different locations worldwide and calculated the 3Hec and 21Nec exposure ages. These ages range between 7100 and 28,000 years for the xenoliths, and we determined their relative positions within the volcanic tuff layer. The mean 3Hec and 21Nec exposure ages of the quartz sample are 1.35 ± 0.07 and 2.21 ± 0.12 Ma, respectively. This difference is most probably related to 3Hec diffusive losses from the quartz mineral grains, even at low temperatures, due to the relatively high diffusion coefficient for cosmogenic 3He. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|