首页 | 本学科首页   官方微博 | 高级检索  
     


Conductivity model for pyrite-bearing laminated and dispersed shaly sands based on a differential equation and the generalized Archie equation
Authors:Zhi-Hua Guo  Yan-Jie Song  Xiao-Min Tang  Chao Wang
Affiliation:1.College of Geo-science,Northeast Petroleum University,Heilongjiang Daqing,China;2.Accumulation and Development of Unconventional Oil and Gas,State Key Laboratory Cultivation Base jointly constructed by Heilongjiang Province and the Ministry of Science and Technology,Heilongjiang Daqing,China;3.No. 9 Oil Production Company Geological Team of Daqing Oilfield Company Ltd,Heilongjiang Daqing,China
Abstract:The conductance of pyrite-bearing laminated and dispersed shaly sands is not well understood and resistivity models for pyrite-bearing shaly sands are nonexistent. Thus, we first synthesize clean pyrite-matrix samples, and quartz-matrix samples with variable laminated shale, dispersed shale, and pyrite content and then perform petrophysics experiments to assess the effect of pyrite content on the conductivity of pyrite-bearing shaly sands. Second, based on the differences in conductivity and conduction pathways and geometries because of the variable composition of the pyrite-bearing laminated and dispersed shaly sands, we divide the shaly sands into their components, i.e., laminated shale, quartz grains, pyrite grains, hydrocarbon, dispersed shale, microscopic capillary water, and mobile water. A generalized resistivity model is proposed to describe the conductivity of pyrite-bearing laminated and dispersed shaly sands, based on the combined conductivity differential equation and generalized Archie equation. In the generalized resistivity model, the conductivity differential equation is used to describe the conductivity of dispersed inclusions in a host, whereas the generalized Archie equation is used to describe the conductivity of two conducting phases. Moreover, parallel conductance theory is used to describe the conductivity of dispersed shaly sands and laminated shale. Theoretical analysis suggests that the proposed model satisfies the physical constraints and the model and experimental results agree. The resistivity and resistivity index of shaly sands decrease with increasing conductivity and pyrite. Finally, the accuracy of the resistivity model is assessed based on experimental data from 46 synthetic core samples with different oil saturation. The model can describe the conductivity of clean pyrite-matrix samples, and quartz-matrix samples with different volumes of laminated shale, dispersed shale, and pyrite. An accurate saturation model of pyrite-bearing laminated and dispersed shaly sands is thus obtained and the log data interpretation in complex shaly sands can improve with the proposed model.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号