首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Velocity dispersion and fluid substitution in sandstone under partially saturated conditions
Authors:Xiao-Yi Ma  Shang-Xu Wang  Jian-Guo Zhao  Han-Jun Yin  Li-Ming Zhao
Institution:1.State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum (Beijing),Beijing,China
Abstract:The elastic moduli of four sandstone samples are measured at seismic (2?2000 Hz) and ultrasonic (1 MHz) frequencies and water- and glycerin-saturated conditions. We observe that the high-permeability samples under partially water-saturated conditions and the low-permeability samples under partially glycerin-saturated conditions show little dispersion at low frequencies (2?2000 Hz). However, the high-permeability samples under partially glycerin-saturated conditions and the low-permeability samples under partially water-saturated conditions produce strong dispersion in the same frequency range (2?2000 Hz). This suggests that fluid mobility largely controls the pore-fluid movement and pore pressure in a porous medium. High fluid mobility facilitates pore-pressure equilibration either between pores or between heterogeneous regions, resulting in a low-frequency domain where the Gassmann equations are valid. In contrast, low fluid mobility produces pressure gradients even at seismic frequencies, and thus dispersion. The latter shows a systematic shift to lower frequencies with decreasing mobility. Sandstone samples showed variations in Vp as a function of fluid saturation. We explore the applicability of the Gassmann model on sandstone rocks. Two theoretical bounds for the P-velocity are known, the Gassmann–Wood and Gassmann–Hill limits. The observations confirm the effect of wave-induced flow on the transition from the Gassmann–Wood to the Gassmann–Hill limit. With decreasing fluid mobility, the P-velocity at 2–2000 Hz moves from the Gassmann–Wood boundary to the Gassmann–Hill boundary. In addition,, we investigate the mechanisms responsible for this transition.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号