首页 | 本学科首页   官方微博 | 高级检索  
     


Application of a multi‐temporal,LiDAR‐derived,digital terrain model in a landslide‐volume estimation
Authors:Chih‐Ming Tseng  Ching‐Weei Lin  Colin P. Stark  Jin‐Kin Liu  Li‐Yuan Fei  Yu‐Chung Hsieh
Affiliation:1. Department of Land Management and Development, Chang Jung Christian University, , Tainan City, Taiwan (R.O.C.);2. Department of Earth Sciences, National Cheng Kung University, , Tainan City, Taiwan (R.O.C.);3. Lamont‐Doherty Earth Observatory, Columbia University, , Palisades, New York, 10964 USA;4. LIDAR Technology Co., Ltd, , Zhubei City, Hsinchu County Taiwan (R.O.C.);5. Environmental & Engineering Geology Division, Central Geological Survey, MOEA, , New Taipei City, 235 Taiwan (R.O.C.)
Abstract:Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas (VL = 0.452AL1.242) and for the crown areas of the landslides (VL = 2.510AL1.206). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >105 m2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.
Keywords:LiDAR  DTM  aerial photographs  landslide area  landslide volume
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号