首页 | 本学科首页   官方微博 | 高级检索  
     

RADARSATSNBSAR数据在大面积水稻估产中的应用研究
引用本文:李岩,彭少麟,廖其芳,廖圣东. RADARSATSNBSAR数据在大面积水稻估产中的应用研究[J]. 地球科学进展, 2003, 18(1): 109-115. DOI: 10.11867/j.issn.1001-8166.2003.01.0109
作者姓名:李岩  彭少麟  廖其芳  廖圣东
作者单位:1. 华南师范大学计算机科学系,广东,广州,510631;广州地理研究所,广东,广州,510070
2. 广东省科学院,广东,广州,510070
3. 广州地理研究所,广东,广州,510070
基金项目:国家自然科学基金项目"星载雷达对华南土地利用变化的快速监测研究"(编号:40071060),广东省科技创新百项工程项目"广东省农情动态监测与快速预报"(编号:99B05701G)资助.
摘    要:由于雷达遥感的全天候、全天时的优势,使之成为南方大范围农业信息动态监测的最佳遥感手段。为了适宜于运行系统,本研究采用加拿大雷达卫星(RADARSAT)窄波扫描模式(SNB)数据,以广东省为例进行了大范围水稻估产。通过建立稻作图谱,解决了在地形复杂、农业集约化程度低、水稻田分布不规则,且地块间田间管理水平差异很大等诸多因素影响下的水稻信息提取问题;在野外观测站采集的水稻生长期生理生态数据的基础上,建立了基于RADARSAT SNB SAR的雷达遥感时序信息水稻估产模型。通过2000年早、晚两季水稻估产的实践证明,此模型估产的精度在平原区达到95%,而在复杂的丘岭谷地则需进一步提高图像预处理的精度,改进特殊地段估产模型的精度。从实用性而言,这是一套高效、经济的技术方法,易于投入实际运行阶段。

关 键 词:雷达遥感  雷达卫星合成孔径雷达窄波扫描模式(RADARSATSNBSAR)  水稻估产
文章编号:1001-8166(2003)01-0109-07
收稿时间:2002-04-30
修稿时间:2002-04-30

RICE YIELD ESTIMATION IN REGIONAL SCALE BY USING RADARSAT SNB SAR IMAGES
Li Yan,Peng Shaolin,Liao Qifang,Liao Shengdong. RICE YIELD ESTIMATION IN REGIONAL SCALE BY USING RADARSAT SNB SAR IMAGES[J]. Advances in Earth Sciences, 2003, 18(1): 109-115. DOI: 10.11867/j.issn.1001-8166.2003.01.0109
Authors:Li Yan  Peng Shaolin  Liao Qifang  Liao Shengdong
Affiliation:1.Computer Science Department, South China Normal University, Guangzhou 510631,China;2.Guangzhou Institute of Geography,Guangzhou 510070,China;3.Guangdong Academy of Sciences, Guangzhou 510070,China
Abstract:Radar remote sensing is the most appropriate for agricultural monitoring and crops yield estimating as the inherent prepotency and its capability of all-weather and day/night imaging. Especially, cultivated areas are most often cloudy and rainy in South China. For this reason, RADARSAT SNB SAR is the dominant data source in tropic and sub-tropical regions and also provided re-visit schedules suitable for monitoring in a regional scale. In the year 2000, it has been successfully done the rice yield estimation for early rice and late rice in whole province of Guangdong, China. Through setting up the rice cropping calendar, a solution of rice information extracting difficulty was found for reducing the influence of undulation landform, low level of intensive agriculture, irregular distribution of paddy and different rice cropping system. A rice yield estimating model with time series RADARSAT SNB SAR data was established for the region. And a yield mapping was produced with the classified result of the model. The final result shown, a high accuracy result was given in the plain but the result had to be improved at pre-processing and estimating models for the valleys of the hills and the low mountains. Nevertheless, the whole procedure was in the high efficient and quite economic and ease for putting in use as an operational system.
Keywords:Rice monitoring  Yield estimation  RADARSAT SNB SAR.
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《地球科学进展》浏览原始摘要信息
点击此处可从《地球科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号