首页 | 本学科首页   官方微博 | 高级检索  
     

应用遗传-神经网络方法预测软土路基沉降
引用本文:李敏刚,张燚,汪操根,李粮纲. 应用遗传-神经网络方法预测软土路基沉降[J]. 探矿工程, 2009, 36(3): 45-47,52
作者姓名:李敏刚  张燚  汪操根  李粮纲
作者单位:[1]中国地质大学武汉工程学院,湖北武汉430074; [2]湖北煤炭地质局,湖北武汉430000
摘    要:理论方法预测软土地基沉降与实际存在较大的差距,使得预测结果很难达到设计要求,不利于指导施工。将现有的理论方法同现场观测信息相结合,对软土地基变形作出更为准确的预测,有利于指导和控制工程施工。采用遗传算法和BP最优化法相结合的算法来训练网络,用遗传算法来优化BP神经网络中权值;用龚帕斯曲线来分解沉降时序,通过沉降趋势线偏移量来训练网络。采用这种方法预测软土路基沉降取得了较好的应用效果。

关 键 词:遗传算法  神经网络  沉降预测
收稿时间:2008-09-05
修稿时间:2009-03-05

Soft Subgrade Settlement Prediction by Generic-Neutral Network
LI Min-gang,ZHANG Yi,WANG Cao-gen and LI Liang-gang. Soft Subgrade Settlement Prediction by Generic-Neutral Network[J]. Exploration Engineering:Rock & Soil Drilling and Tunneling, 2009, 36(3): 45-47,52
Authors:LI Min-gang  ZHANG Yi  WANG Cao-gen  LI Liang-gang
Affiliation:LI Min-gang , ZHANC Yi , WANG Cao-gen , LI Liang-gang ( 1. China University of Geosciences, Wuhan Hubei 430074, China; 2. Hubei Administration of Coal Geology, Wuhan Hubei 430000, China)
Abstract:There exists a large gap in the soft ground settlement between theory prediction and the practice, so it is difficult to meet the design requirements and is not conducive to guide the construction. Combination of existing theoretical prediction methods and field observation information is helpful to control the engineering construction. With the combination of ge- netic algorithm and BP optimization method to train the network, weights of BP neural network can be optimized ; with Gong Paz curve to decompose the settlement timing, network was trained by offset of settlement trend line. Good application results were achieved in predicting soft ground settlement by using this method.
Keywords:genetic algorithm  neural networks  settlement prediction
本文献已被 维普 等数据库收录!
点击此处可从《探矿工程》浏览原始摘要信息
点击此处可从《探矿工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号