首页 | 本学科首页   官方微博 | 高级检索  
     

三峡库区堆积层滑坡间歇性活动预测:以白水河滑坡为例
引用本文:孙一清,李德营,殷坤龙,陈丽霞,汪 洋. 三峡库区堆积层滑坡间歇性活动预测:以白水河滑坡为例[J]. 地质科技通报, 2019, 38(5): 195-203
作者姓名:孙一清  李德营  殷坤龙  陈丽霞  汪 洋
作者单位:中国地质大学(武汉)工程学院;中国地质大学(武汉)地球物理与空间信息学院
基金项目:国家自然科学基金项目(41772310;41842062)
摘    要:三峡库区堆积层滑坡在季节性降雨和库水位周期波动的影响下呈现间歇性活动特征,滑坡活动强度与诱发因素作用强度和时间关系密切。以三峡库区白水河滑坡为例,分析了堆积层滑坡间歇性活动特征和诱发因素,发现降雨和库水位下降是滑坡变形的主要诱发因素。根据滑坡时序曲线特征,将滑坡累积位移分解为趋势项位移和周期项位移,采用多项式拟合的方法来预测趋势项位移,利用长短期记忆神经网络模型来预测周期项位移,并与极限学习机模型、广义回归神经网络模型的预测结果进行了对比分析,发现长短期记忆神经网络模型预测滑坡间歇性活动精度更高。

关 键 词:三峡库区  白水河滑坡  位移预测  长短期记忆神经网络  时间序列分析

Intermittent Movement Prediction of Colluvial Landslide in the Three Gorges Reservoir: A Case Study of Baishuihe Landslide
Sun Yiqing,Li Deying,Yin Kunlong,Chen Lixian,Wang Yang. Intermittent Movement Prediction of Colluvial Landslide in the Three Gorges Reservoir: A Case Study of Baishuihe Landslide[J]. Bulletin of Geological Science and Technology, 2019, 38(5): 195-203
Authors:Sun Yiqing  Li Deying  Yin Kunlong  Chen Lixian  Wang Yang
Affiliation:(Faculty of Engineering,China University of Geosciences(Wuhan), Wuhan 430074, China;Faculty of Geophysics and Geomatics,China University of Geosciences(Wuhan), Wuhan 430074, China)
Abstract:Colluvial landslides affected by the effect of seasonal rainfall and reservoir water in the Three Gorges Reservoir often behave intermittent movement characteristics. Landslide movement intensity is related to inducing factor intensity and action time. In the paper, Baishuihe landslide in the reservoir was chosen to analyze the characteristics of the intermittent movement and the trigger factors. Rainfall and drawdown of the reservoir water level are found to be major trigger factors. Based on characteristics of time series data, the cumulative displacement is divided into a trend term and a periodic term. A polynomial model was used to predict the trend term and a long short-term memory neural network was used to predict the periodic term. In order to compare prediction results, extreme learning machine and generalized regression neural network were chosen to predict the periodic term. The results show that long short-term memory neural network has higher accuracy in prediction of landslide intermittent movement.
Keywords:Three Gorges Reservoir  Baishuihe landslide  displacement prediction  long and short-term memory  time series analysis
本文献已被 维普 等数据库收录!
点击此处可从《地质科技通报》浏览原始摘要信息
点击此处可从《地质科技通报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号