首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A comparative study of suction stress between sand and silt under unsaturated conditions
Authors:Young-Suk Song  Woong-Ki Hwang  Soo-Jung Jung  Tae-Hyung Kim
Institution:1. Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources, Republic of Korea;2. Department of Civil and Environmental Engineering, Korea Maritime University, Republic of Korea;3. Geotechnical Disaster Research Team, National Institute for Disaster Prevention, Republic of Korea;4. Department of Civil Engineering, Korea Maritime University, Republic of Korea
Abstract:The purpose of this study is to estimate and compare suction stress between sand and silt sampled from the coast of Korea. The water content and matric suction of sand (Joomunjin) and silt (Saemangeum) were first examined using an automated soil–water characteristic curve (SWCC) apparatus based on the axis translation technique. SWCCs were then estimated from the test results using the van Genuchten (1980) model. At equal matric suction, the corresponding water content of silt was higher than that of sand. Moreover, the saturated water content and air-entry value (AEV) of silt were larger than those of sand. Using the fitting SWCC parameters, suction stress characteristic curves (SSCCs) were estimated according to the method proposed by Lu and Likos (2006). The SSCC behavior for sand and silt was different and significantly depended on the material properties, particularly pore size and pore size distribution. For sand, the suction stress exhibited rapid variation with changes in matric suction, but for silt, the suction stress approached a constant value as the matric suction increased. In addition, when the matric suction was smaller than the AEV of soil, the suction stress was equal to the magnitude of the matric suction. In contrast, when the matric suction exceeded the AEV of soil, suction stress had a nonlinear shape with respect to the matric suction.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号