首页 | 本学科首页   官方微博 | 高级检索  
     


Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks
Authors:Ip  Sabrina C. Y.  Choo  Jinhyun  Borja  Ronaldo I.
Affiliation:1.Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
;2.Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong
;
Abstract:

Geomaterials such as soils and rocks can exhibit inherent anisotropy due to the preferred orientation of mineral grains and/or cracks. They can also be partially saturated with multiple types of fluids occupying the pore space. The anisotropic and unsaturated behaviors of geomaterials can be highly interdependent. Experimental studies have shown that the elastic parameters of rocks evolve with saturation. The effect of saturation has also been shown to differ between directions in transversely isotropic clay rock. This gives rise to saturation-dependent stiffness anisotropy. Similarly, permeability anisotropy can also be saturation-dependent. In this study, constitutive equations accommodating saturation-dependent stiffness and hydraulic anisotropy are presented. A linear function is used to describe the relationship between the elastic parameters and saturation, while the relative permeability–saturation relationship is characterized with a log-linear function. These equations are implemented into a hydromechanical framework to investigate the effects of saturation-dependent properties on the shrinkage behavior of clay rocks. Numerical simulations are presented to demonstrate the role of saturation-dependent stiffness and hydraulic anisotropy in shrinkage behavior. The results highlight that strain anisotropy and time evolution of pore pressures are substantially influenced by saturation-dependent stiffness and hydraulic anisotropy.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号