首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Petrology and Geochemistry of Cone-sheets from the Cuillin Igneous Complex, Isle of Skye: Evidence for Combined Assimilation and Fractional Crystallization during Lithospheric Extension
Authors:BELL  BRIAN R; CLAYDON  RUSSELL V; ROGERS  GRAEME
Institution:1Department of Geology and Applied Geology, University of Glasgow Glasgow G12 8QQ, UK
2Isotope Geosciences Unit, Scottish University Research and Reactor Centre East Kilbride, Glasgow G75 0QU, UK
Abstract:The origin and evolution of the magma(s) involved in the formationof the olivine tholeiite cone-sheets which invade the ~60-MaCuillin Igneous Complex, Isle of Skye, have been investigatedusing mineral chemistry data together with whole-rock major-and trace-element and isotope (Sr and Nd) geochemistry data.The most primitive compositions identified are almost identicalto those of the basalts being erupted at the present day alongthe spreading centre in Iceland. Rare examples of lavas fromthe slightly older lava pile of west-central and north Skye,together with a large number of dykes from the axial zone ofthe Skye Main Swarm, are of similar composition and are referredto as being of the Preshal More Basalt type (spelling is accordingto current Ordnance Survey of Great Britain maps). The intra-suitecompositional variation exhibited by the cone-sheets can beexplained in terms of relatively low-pressure fractionationof the three-phase assemblage olivine+clinopyroxene+plagioclasein their cotectic proportions of 10: 35: 55. Modelling of major-and compatible trace-element data indicates that the most evolvedcomposition may be derived by 60% crystallization of the leastevolved composition. Incompatible trace-element modelling impliesgreater degrees of crystal-liquid fractionation: Y and Zr indicate64 and 68% crystallization, respectively, whereas the rare earthelements (Eu, Yb, Gd, and Ce) indicate between 71 and 75% crystallization.This decoupled behaviour of compatible and incompatible elementsis attributed to the cone-sheet magma(s) evolving in a subjacentmagma chamber, before final emplacement in the overlying crust.Sr- and Nd-isotope data indicate that the cone-sheet magma(s)assimilated upper-crustal lithologies during fractional crystallization,most likely involving amphibolite facies gneiss of the LewisianGneiss Complex. This style of simultaneous assimilation andfractional crystallization (AFC) process in the upper crustfor the Skye cone-sheet magma(s) is in direct contrast to theprocesses identified for the magmas which produced the bulkof the lava field of west-central and north Skye, where assimilationoccurred after fractionation. The cone-sheet magmas were generatedby relatively large degrees of partial melting of a depletedmantle source associated with significant lithospheric stretching.The cause of this depletion, together with the temporal relationshipsbetween the cone-sheet magmas and the dominant transitionalmagmas of the Skye lava field and sill complex, are also discussed. * Reprint request to B. R. Bell
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号