首页 | 本学科首页   官方微博 | 高级检索  
     


Gravity,topography, and crustal evolution of Venus
Authors:Carl Bowin
Affiliation:Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA
Abstract:The gravity anomalies of Venus, although small by comparison with those on Mars and the Moon, are still much larger than those on Earth for large features. On Venus, even the low-degree spherical harmonic terms for Venus' gravity field indicate a close association of broad positive gravity anomalies with major topographic highs. This is striking contrast to the situation on Earth, where the broad regional gravity anomalies show little correlation with continental masses or plate tectonic features, but instead appear to be caused by deep mass anomalies.A method for estimating radial gravity anomalies from line-of-sight acceleration data, their interpolation, and use of iteration for improved radial anomaly estimates is outlined. A preliminary gravity anomaly map of Venus at spacecraft altitude prepared using first estimate values is presented. A profile across the western part of Aphrodite along longitude 85 E was analyzed using time-series techniques. An elastic plate model would require a plate thickness of about 180 to 200 km to match the general amplitude of the observed gravity anomaly (about 33 mgal): a thickness much greater than that found for earth structures and, because of high surface temperatures, unlikely for Venus. An Airy isostatic model convolved with the topography across Aphrodite, however, provides a better match between the predicted and observed gravity anomalies if the nominal crustal thickness is about 70 to 80 km. This thickness is over twice that for continental crust on the earth, and considerably greater than that of the earth's basaltic ocean crust (only 5 km). A different differentiation history for Venus than that of the earth thus is anticipated. High gravity anomalies (+110 mgal) occur over Beta Regio and over the topographic high in eastern Aphrodite; both highs are associated with regions where detected lightning is clustered, and thus the topographic features may be active volcanic constructs. The large gravity anomalies at these two sites of volcanic activity require an explanation different than that indicated for western Aphrodite.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号