首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Radiative equilibrium model of Titan's atmosphere
Authors:Robert E Samuelson
Institution:Laboratory for Extraterrestrial Physics, Code 693.2, NASA/Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
Abstract:A simple global radiative equilibrium model is developed for Titan. It is restricted to the two-stream approximation, is vertically homogeneous in its scattering properties, and is spectrally divided into one thermal and two solar channels. A partially absorbing “violet” channel is responsible for heating in the stratosphere, while a conservatively scattering “red” channel permits heating at the surface. The optical thickness of the atmosphere in the red is 1 < τ1r < 3. Between 13 and 33% of the total incident solar radiation is absorbed at the planetary surface. The ratio of violet to thermal infrared absorption cross sections is between 30 and 60 in the stratosphere, leading to the large temperature inversion observed there. The observed and theoretically computed tropopause temperatures are 72 and 69°K, respectively, while their corresponding thermal optical depths are, respectively, ~0.1 and ~0.07. The spectrally integrated mass absorption coefficient at thermal wavelengths is approximately constant throughout the stratosphere and roughly linear with pressure in the troposphere. This in turn implies the presence of a uniformly mixed aerosol in the stratosphere, and suggests pressure-induced absorption by gaseous N2CH4H2 in the troposphere. In addition there appear to be two regions of enhanced opacity near 30 and 500 mbar which may be due to C2H2C2H6C3H8 and CH4 condensation clouds, respectively.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号