首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Exploring the nature of non-Fickian transport in laboratory experiments
Authors:Brian Berkowitz  Harvey Scher
Institution:Department of Environmental Sciences and Energy Research, Weizmann Institute of Science, Rehovot 76100, Israel
Abstract:Observations of non-Fickian transport in sandbox experiments Levy M, Berkowitz B. Measurement and analysis of non-Fickian dispersion in heterogeneous porous media. J Contam Hydrol 2003;64:203–26] were analyzed previously using a power law tail ψ(t) ∼ t−1−β with 0 < β < 2 for the spectrum of transition times comprising a tracer plume migration. For each sandbox medium a choice of β resulted in an excellent fit to the breakthrough curve (BTC) data, and the value of β decreased slowly with increasing flow velocity. Here, the data are reanalyzed with the full spectrum of ψ(t) gleaned from analytical calculations Cortis A, Chen Y, Scher H, Berkowitz B. Quantitative characterization of pore-scale disorder effects on transport in “homogeneous” granular media. Phys Rev E 2004;10(70):041108. doi: 10.1103/PhysRevE.70.041108], numerical simulations Bijeljic B, Blunt MJ. Pore-scale modeling and continuous time random walk analysis of dispersion in porous media. Water Resour Res 2006;42:W01202. doi: 10.1029/2005WR004578] and permeability fields Di Donato G, Obi E-O, Blunt MJ. Anomalous transport in heterogeneous media demonstrated by streamline-based simulation. Geophys Res Lett 2003;30:1608–12s. doi: 10.1029/2003GL017196]. We represent the main features of the full spectrum of transition times with a truncated power law (TPL), ψ(t) ∼ (t1 + t)−1−βexp(−t/t2), where t1 and t2 are the limits of the power law spectrum. An excellent fit to the entire BTC data set, including the changes in flow velocity, for each sandbox medium is obtained with a single set of values of t1, β, t2. The influence of the cutoff time t2 is apparent even in the regime t < t2. Significantly, we demonstrate that the previous apparent velocity dependence of β is a result of choosing a pure power law tail for ψ(t). The key is the change in the log–log slope of the TPL form of ψ(t) with a shifting observational time window caused by the change in the mean velocity. Hence, the use of the full spectrum of ψ(t) is not only necessary for the transition to Fickian behavior, but also to account for the dynamics of these laboratory observations of non-Fickian transport.
Keywords:Continuous time random walk  Anomalous transport  Breakthrough curves
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号