首页 | 本学科首页   官方微博 | 高级检索  
     

基于PCA-SVR的煤层底板突水量预测
引用本文:刘北战, 梁冰. 基于PCA-SVR的煤层底板突水量预测[J]. 煤田地质与勘探, 2011, 39(1): 28-30,35. DOI: 10.3969/j.issn.1001-1986.2011.01.007
作者姓名:刘北战  梁冰
作者单位:1. 辽宁工程技术大学理学院, 辽宁 阜新 123000;
摘    要:提出了一种基于主成分分析支持向量机回归(PCA-SVR)的煤层底板突水预测方法,用主成分分析来解决输入变量的选择问题。主成分以较少的维数包含了高维变量所携带的大部分信息,这不仅避免了过多的输入导致训练速度慢,同时也保证了预测准确度。实例表明,所提方法可有效消除众多影响因素间的相关性,减少输入变量个数,提高预测效率和精度。

关 键 词:主成分分析  支持向量机  煤层底板  突水  预测
收稿时间:2010-05-02

Prediction of seamfloor water inrush based on combining principal component analysis and support vector regression
LIU Beizhan, LIANG Bing. Prediction of seamfloor water inrush based on combining principal component analysis and support vector regression[J]. COAL GEOLOGY & EXPLORATION, 2011, 39(1): 28-30,35. DOI: 10.3969/j.issn.1001-1986.2011.01.007
Authors:LIU Beizhan  LIANG Bing
Affiliation:1. College of Science, Liaoning Technical University, Fuxin 123000, China;2. College of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, China
Abstract:This paper proposed a prediction method that is based on combing principal component analysis and support vector regression.Principal component analysis was used to select input variables.The prediction model considers all-sided influencing factors and avoids the low precision and slow training induced by over-input.The example shows that it eliminates the relevance among factors,reduces the input variables and improves the accuracy and efficiency.
Keywords:principal component analysis  support vector machine  seamfloor  water inrush  prediction  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《煤田地质与勘探》浏览原始摘要信息
点击此处可从《煤田地质与勘探》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号