首页 | 本学科首页   官方微博 | 高级检索  
     

GENETIC ALGORITHMS AS A STRATEGY FOR FEATURE SELECTION
引用本文:R.LEARDI,R.BOGGIA,M.TERRILE. GENETIC ALGORITHMS AS A STRATEGY FOR FEATURE SELECTION[J]. 地理学报(英文版), 1992, 0(5)
作者姓名:R.LEARDI  R.BOGGIA  M.TERRILE
作者单位:Istitute di Analisi e Tecnologie Farmaceutiche ed Alimentari Via Brigata Salerno(Ponte) I-16147 Genova Italy,Istitute di Analisi e Tecnologie Farmaceutiche ed Alimentari Via Brigata Salerno(Ponte) I-16147 Genova Italy,Istitute di Analisi e Tecnologie Farmaceutiche ed Alimentari Via Brigata Salerno(Ponte) I-16147 Genova Italy
摘    要:Genetic algorithms have been created as an optimization strategy to be used especially when complexresponse surfaces do not allow the use of better-known methods (simplex, experimental designtechniques, etc.). This paper shows that these algorithms, conveniently modified, can also be a valuabletool in solving the feature selection problem. The subsets of variables selected by genetic algorithms aregenerally more efficient than those obtained by classical methods of feature selection, since they canproduce a better result by using a lower number of features.


GENETIC ALGORITHMS AS A STRATEGY FOR FEATURE SELECTION
R. LEARDI,R. BOGGIA,M. TERRILE,Istitute di Analisi e Tecnologie Farmaceutiche ed Alimentari,Via Brigata Salerno. GENETIC ALGORITHMS AS A STRATEGY FOR FEATURE SELECTION[J]. Journal of Geographical Sciences, 1992, 0(5)
Authors:R. LEARDI  R. BOGGIA  M. TERRILE  Istitute di Analisi e Tecnologie Farmaceutiche ed Alimentari  Via Brigata Salerno
Abstract:Genetic algorithms have been created as an optimization strategy to be used especially when complex response surfaces do not allow the use of better-known methods (simplex, experimental design techniques, etc.). This paper shows that these algorithms, conveniently modified, can also be a valuable tool in solving the feature selection problem. The subsets of variables selected by genetic algorithms are generally more efficient than those obtained by classical methods of feature selection, since they can produce a better result by using a lower number of features.
Keywords:Genetic algorithms  Feature selection  Multivariate analysis  Optimization methods
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号