首页 | 本学科首页   官方微博 | 高级检索  
     


Some hydrodynamic problems for a nepheloid zone
Authors:Takashi Ichiye
Affiliation:(1) Lamont Geological Observatory of Columbia University, Palisades, NY, USA
Abstract:Summary A layer of a few hundred meters thickness with suspended matter (a nepheloid zone) was discovered byEwing andThorndike [4]3) near the bottom on the continental slope of the North Atlantic. A downward pressure gradient is produced in this layer due to increment of water density with suspensoid. When only the Coriolis force balances with this pressure gradient, a bottom nepheloid current flows southwestward parallel to the depth contours with a velocity of about 10 (cm/sec) for a slope of one degree. The pressure gradient for fluid with locally variable density above a sloping bottom is treated and an extra term due to density gradient along the slope is derived. The vertical profiles of the nepheloid current with an effect on the vertical eddy viscosity are computed. Two kinds of vertical distributions of eddy viscosity are determined from the observed nepheloid distributions and used in the calculations: constant but different values at two layers and those increasing with height. The effect of the change of density along the bottom is treated by introducing dimensionless variables. Rossby number of the nepheloid current becomes about 10–2 indicating inertia terms to be negligible. Rossby number of turbidity currents ranges from 2 (in a decaying area) to 5 (developing area), suggesting that inertia terms are more important than Coriolis terms. The trajectories of turbidity currents are computed from motion of a mass of mud under the Coriolis force and friction, and the results are applied to those inferred byHand andEmery [6] in the San Diego Through off California.LGO Contribution Number 925.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号