Cordierite gneisses of southern Kerala,India: petrology,fluid inclusions and implications for crustal uplift history |
| |
Authors: | M. Santosh |
| |
Affiliation: | (1) Centre for Earth Science Studies, P.B. 2235, 695 010 Sasthamangalam, Trivandrum, India |
| |
Abstract: | The cordierite-bearing gneisses occurring as elongate patches in an 8- to 10-km-wide zone along the Achankovil fault-lineament at the northern margin of the southern Kerala crustal segment represent an important lithological unit in the Archaean granulite terrane of south India. The textural relationships in these rocks are consistent with the following main reactions: (1) garnet+quartz=cordierite+hypersthene; (2) garnet+sillimanite+quartz=cordierite; (3) hypersthene+sillimanite+quartz=cordierite; (4) sillimanite+spinel=cordierite+corundum; and (5) biotite+quartz+sillimanite=cordierite+K-feldspar. Many of the mineral associations and reaction textures, including the remarkable preservation of symplectites, are indicative of partial replacement of high-pressure assemblages by cordierite-bearing lower-pressure ones during an event of rapid decompression. Temperature estimates from coexisting mineral phases show 710° (garnet-biotite), 791° (garnet-cordierite) and 788° C (garnet-orthopyroxene). Pressure estimates from mineral assemblages range from 5.4 to 7 kb. Detailed fluid inclusion studies in quartz associated with cordierite show high-density CO2 (0.80–0.95 g/cm3) as the dominant fluid phase, with traces of probable CH4 (?) in the sillimanite-bearing rocks. The isochore for the higher-density fluid inclusions defines a pressure of 5.5 kb. The fracture-bound CO2 and CO2-H2O (±CH4?) inclusions indicate simultaneous entrapment at 400° C and 1.7 kb in the cordierite-hypersthene assemblage and 340° C and 1.2 kb in the cordierite-sillimanite assemblage. The P-T path delineated from combined solid and fluid data corresponds to the piezothermic array of the gneisses and is characterized by T-convex nature, indicative of rapid and virtually isothermal crustal uplift, probably aided by extensional tectonics. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|