首页 | 本学科首页   官方微博 | 高级检索  
     


ENSO cycle in a coupled ocean-atmosphere model and its negative feedback mechanism
Authors:Assoc. Prof. Dr. X. -Q. Yang  Dr. Q. Xie  Prof. Y. -Q. Ni  Dr. S. -S. Huang
Affiliation:(1) Present address: Department of Atmospheric Sciences, Nanjing University, 210093 Nanjing, P. R. China;(2) Present address: Department of Meteorology, Air Force Institute of Meteorology, 211101 Nanjing, P. R. China
Abstract:Summary A coupled ocean-atmosphere anomaly model has been developed for simulating ENSO cycle and its mechanism-study in this paper. After a long model run, the coupled model is successful in demonstrating ENSO-like irregular interannual variability and corresponding horizontal spatial structures. Based on the simulated results, the dynamics and the thermodynamics of the model ENSO cycle have been investigated, and in particular the negative feedback mechanisms that act to oppose instability of air-sea interaction, inducing termination of warm and cold events, have been examined. A detailed analysis of the oceanic wave dynamical properties and heat budget of the SST changes in a representative cycle suggest that the negative feedback mechanism to check the unstable growth of a warm event obviously differs from that of a cold event. The mechanism that induces decay and termination of a cold event is closely related to the negative, delayed feedback effect produced by the oceanic dynamical wave reflection at the western boundary. However, independent of the wave reflection effect, the negative feedback mechanism by which the coupled system returns from a warm event is associated with a slowly eastward-propagating coupling mode. Accompanied with the strong unstable development of the equatorial positive SST anomaly, the anomalous upwelling of cold water generated off the equator and the nonlinear anomalous meridional advection generated in the equator west of instability area jointly restrain the instability and finally plunge the system from a mature warm phase into a weak cold phase. A comparison between the results from the present model and the previous works is also discussed in this paper.With 16 Figures
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号