首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Research on catastrophic rock avalanche at Guanling, Guizhou, China
Authors:Yueping Yin  Ping Sun  Jiliang Zhu  Shengyuan Yang
Institution:(1) China Geological Survey, Beijing, 100037, China;(2) Key Laboratory of Neotectonic Movement and Geohazard, Ministry of Land and Resources, Chinese Academy of Geological Sciences, Beijing, 100081, China;(3) Institute of Geo-Environmental Monitoring of Guizhou Province, Guiyang, 550004, China
Abstract:On June 28, 2010, a catastrophic rock avalanche occurred after an extreme rainstorm at Guanling with N 25°59′10′′ in latitude and E 105°16′50′′ in longitude, Guizhou, China. This rock avalanche has a long run-out distance of 1.5 km, with 1.75 million cubic meters of debris instantly burying two villages and resulting in 99 deaths. It originated in the coal measure strata, with the upper part of limestone and dolomite, the middle part of the sandstone with gentle inclination, and the lower part of shale and mudstone, together locally with coals. This kind of unique structure, with hard resistant caprock overlying softer ductile rocks, coupled with the central outflow region at the contact zone, has catastrophic potential for rock avalanches and creates challenges for engineering geological/hydrogeological analysis. The topography showed that the hillside slopes were steeper at the upper portion but gentler in the lower portion, looked like the shape of a “boot.” The upper steep landform easily led to slope instability due to its high static shear stresses, and the wide middle and lower parts provided kinematic conditions for long run-out. Transformation of the larger potential energy into kinetic energy contributed to the formation of a rapid long run-out rock avalanche. The rainfall from June 27 to 28 was the apparent trigger of this catastrophic avalanche. The measured rainfall of more than 310 mm within 24 h exceeded the local historical records that were recorded over the last 60 years. The pore pressure on discontinuities of sandstone had an effect on the slope stability. The valley runoff supplied a saturated base for the long run-out debris, inducing an additional increase of the terminus distance and the increased velocity of the avalanche movement.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号