首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geospatial modeling for assessing the nutrient load of a Himalayan lake
Authors:Shakil Ahmad Romshoo  Mohammad Muslim
Institution:(1) Department of Geology and Geophysics, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
Abstract:This research makes use of the remote sensing, simulation modeling and field observations to assess the non-point source pollution load of a Himalayan lake from its catchment. The lake catchment, spread over an area of about 11 km2, is covered by different land cover types including wasteland (36%), rocky outcrops (30%), agriculture (12%), plantation (12.2%), horticulture (6.2%) and built-up (3.1%) The GIS-based distributed modeling approach employed relied on the use of geospatial data sets for simulating runoff, sediment, and nutrient (N and P) loadings from a watershed, given variable-size source areas, on a continuous basis using daily time steps for weather data and water balance calculations. The model simulations showed that the highest amount of nutrient loadings are observed during wet season in the month of March (905.65 kg of dissolved N, 10 kg of dissolved P, 10,386.81 kg of total N and 2,381.89 kg of total P). During the wet season, the runoff being the highest, almost all the excess soil nutrients that are trapped in the soil are easily flushed out and thus contribute to higher nutrient loading into the lake during this time period. The 11-year simulations (1994–2004) showed that the main source areas of nutrient pollution are agriculture lands and wastelands. On an average basis, the source areas generated about 3,969.66 kg/year of total nitrogen and 817.25 kg/year of total phosphorous. Nash–Sutcliffe coefficients of correlation between the daily observed and predicted nutrient load ranged in value from 0.80 to 0.91 for both nitrogen and phosphorus.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号