首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cu, Mn, and Ag mineralization in the Quebrada Marquesa Quadrangle, Chile: the Talcuna and Arqueros districts
Authors:R Oyarzun  L Ortega  J Sierra  R Lunar  J Oyarzun
Institution:(1) Departamento de Cristalografía y Mineralogía, Facultad de C.C. Geológicas, Universidad Complutense, 28040 Madrid, Spain e-mail: oyarzun@eucmax.sim.ucm.es, ES;(2) Departamento de Cristalografía y Mineralogía, Facultad de C.C. Geológicas, Universidad Complutense, 28040 Madrid, Spain, ES;(3) Departamento de Minas, Facultad de Ingeniería, Universidad de La Serena, Casilla 554, La Serena, Chile, CL
Abstract:The Quebrada Marquesa Quadrangle in Chile exhibits a series of mineralizations comprising manto-type manganese and copper deposits of Lower Cretaceous age, and copper and silver veins of Tertiary age. The deposits are hosted by volcanic and volcaniclastic units of the Arqueros (Hauterivian-Barremian) and Quebrada Marquesa (Barremian-Albian) Formations. Three episodes of manganese mineralization (Mn1-3) are recognized within the study area. Hydrothermal activity leading to episodes 1 and 3 was of minor importance, while the second one (Mn2) gave rise to major manto-type deposits of both manganese and copper in the Talcuna mining district. Extensional faulting during Tertiary time resulted in block faulting and the unroofing of the oldest andesitic volcanics and marine sediments (Arqueros Formation). This episode was accompanied by magmatic and hydrothermal activity leading to vein formation in the Arqueros (Ag) and Talcuna (Cu) districts. The latter veins cross-cut the previous manto-type copper deposits. Ore mineralogy is similar in both styles of mineralization (manto- and vein-type) and consists mainly of chalcopyrite and bornite, with variable amounts of galena, tetrahedrite (vein-related), chalcocite, sphalerite, pyrite, hematite, digenite and covellite. Alteration processes at Talcuna can be divided into two categories, those related to the Lower Cretaceous manto-type episode (LK alteration: chlorite-epidote-calcite-albite, prehnite, zeolite), and those associated with the locally mineralized normal faults of Tertiary age (Tt alteration: chlorite-calcite, sericite). The Arqueros silver veins display an ore mineralogy consisting of arquerite, argentite, native silver, polybasite, cerargyrite and pyrargyrite-proustite; associated alteration includes strong chloritization of the country rock. The manto-type deposits formed from fluids of salinity between 11 and 19 wt.% NaCl equivalent and temperatures between 120 and 205 °C. Mineralizing fluids during the vein-type stage circulated at lower temperatures, between 70 and 170 °C, with salinity values in a wide range from 3 to 27 wt.% NaCl equivalent. This distribution of salinities is interpreted as the result of the complex interplay of two different processes: boiling and fluid mixing; the former is considered to control the major mineralogical, textural and fluid inclusion features of the vein-type deposits. We suggest that the Lower Cretaceous mineralization (manto-type stage) developed in response to widespread hydrothermal activity (geothermal field-type) involving basinal brines. Received: 18 July 1997 / Accepted: 28 January 1998
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号