首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Baroclinic wind adjustment processes in the Mediterranean Sea
Authors:Nadia Pinardi  Antonio Navarra
Abstract:The wind-driven general circulation of the Mediterranean Sea is studied using a primitive equation model. The model uses a 0.25° horizontal resolution and eight or 16 levels in the vertical. The model uses the Mediterranean basin geometry, and the Strait of Gibraltar is closed. The vertical density structure is initialized with annual average data, and the temperature and salinity values are fixed at the surface to simulate perpetual annual mean conditions. The wind forcing consists of monthly mean climatological stresses.The results show that the general circulation of the Mediterranean Sea has a multiple time-scale character (seasonal excursions and steady state amplitudes are comparable) and it is composed by sub-basin scale gyres corresponding to the scale of the wind stress curl centers. The steady state circulation (annual mean average) is determined by a Sverdrup balacne modified by viscous effects.The unsteady vertically integrated transport circulation consists of sub-basin scale gyres similar to the steady state transport components, which amplify seasonally and the partial or total reversal of the currents in many subportions of the basin. The gyres can be stationary in position or propagating. This seasonal ocean response is partly constituted by Rossby modes due to the wind stress curl annual harmonic. The baroclinic circulation shows the seasonal shift of the North African Current from a position along the African coasts during winter to the center of the Balearic and Ionian basin during summer.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号