首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Deformation und Umwandlung von Plagioklas durch Stoßwellen in den Gesteinen des Nördlinger Ries
Authors:Dieter Stöffler
Institution:(1) Mineralogisch-Petrographisches Institut der Universität Tübingen, Deutschland
Abstract:Plagioclase from fragments of crystalline basement rocks in breccias found in the area of the Nördlinger Ries crater displays characteristic plastic deformation and phase transition phenomena due to shock metamorphism at different pressures in the range of 100 to 1000 kilobars.These phenomena are discussed in the scope of a progressive impact metamorphism the degree of metamorphism reflecting a radial gradient of pressure and temperature diminishing outward from the point of meteorite impact.Within the lowest pressure range of about 100 to 300 kilobars (shock stage I) strong fracturing and plastic deformation such as bending of crystals, deformation bands and ldquoplanar featuresrdquo (lamellae of lowered refractive index and of lowered or no birefringence) are to be found. The lamellae which are mostly isotropic, are interpreted as slip bands the glide planes of which are low indices planes of the plagioclase lattice such as (001), (010), (100), (1¯20), (130) and others. These slip bands are unknown from feldspar formed by normal processes within the earth's crust. Plagioclase of such a stage of deformation shows an unusual strong decrease of refraction and birefringence. Its optical properties are those of a highly disordered plagioclase. It may be called ldquodiaplecticrdquo plagioclase.Total isotropization of plagioclase is a typical feature of the pressure range from 300 to 500 kilobars (shock stage II). This glass which is called ldquodiaplecticrdquo glass differs strongly from the normal glass in physical properties and structural state. It is formed by a kind of solid state transformation without actual melting.Shock pressures in the order of 500 to 650 kilobars (shock stage III) are able to cause selective melting of plagioclase grains in a crystalline rock. Normal glasses with vesicles and streaks are formed by this process.Within the pressure range of about 650 to 1000 kilobars (shock stage IV) residual temperatures are so high that total melting of rocks occurs. Plagioclase melts are mixed inhomogenously with other silicate melts forming rock melts which can be found in suevite as flat glassy bombs. Vaporization of silicates must be expected in the upper pressure range of this shock stage.Statistical universal stage measurements on the fabric of plagioclase support theoretical considerations after which the deformation pattern of a single crystal should depend on the fabric relations to the surrounding minerals and on their physical properties. Strongly inhomogenous deformation of plagioclase minerals within the microscopic rock scale was observed because polycrystalline rocks are disorganizing a unique shock front by interaction of wave fronts at interfaces and free surfaces and perhaps by multiwave shocks. Directions of compressive and tensile stresses on a mineral are therefore changing from grain to grain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号