首页 | 本学科首页   官方微博 | 高级检索  
     


Lead isotope systematics of vein-type antimony mineralization,Rheinisches Schiefergebirge,Germany: a case history of complex reaction and remobilization processes
Authors:Thomas Wagner  Jens Schneider
Affiliation:1.Mineralogisches Institut, Universit?t Würzburg, Am Hubland, D-97074 Würzburg,Germany;2.Institut für Geowissenschaften und Lithosph?renforschung, Justus-Liebig-Universit?t, Senckenbergstr. 3, Gie?en,Germany
Abstract:Mesothermal vein-type Sb mineralization in the Rheinisches Schiefergebirge, Germany, is characterized by two different mineralization styles, which are (1) extensional quartz-stibnite vein systems, and (2) (Cu)-Pb-Sb sulphosalt assemblages in overprinted pre-existing Pb-Zn veins. A detailed Pb isotope study of 52 representative samples from both mineralization types indicates distinct compositional patterns. (Cu)-Pb-Sb sulphosalts (meneghinite, boulangerite, bournonite) formed by reaction/remobilization are characterized by Pb isotope compositions (206Pb/204Pb=18.179-18.223), which are identical to the precursor galena (206Pb/204Pb=18.168-18.223). The Pb isotope composition of sulphosalt minerals in these vein systems was controlled by lead inherited from pre-existing galena. Stibnite and Pb-sulphosalts (zinkenite, semseyite, plagionite) formed in quartz-stibnite vein systems display Pb isotope ratios (206Pb/204Pb=18.250-18.354), which are more radiogenic than galenas from Variscan Pb-Zn ore veins (206Pb/204Pb=18.162-18.303). Detailed small-scale investigation of thrust zones hosting Pb-Zn ores and crosscutting quartz-ankerite fissure veins (Ramsbeck deposit) indicates that the Pb isotope compositions of recrystallized (galena) and remobilized phases (boulangerite, semseyite, bournonite) are arranged along a linear trend. This is interpreted as mixing between primary galena with 206Pb/204Pb᜞.206 and overprinting hydrothermal fluids with a more radiogenic composition (206Pb/204Pb⁾.354), expressed by intermediate compositions (206Pb/204Pb=18.256-18.334) of newly-formed sulphosalts. The Pb isotope systematics of the vein-type Sb mineralization is in accordance with a model of Pb extraction from similar crustal sources (Palaeozoic sedimentary sequences) at different times.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号