首页 | 本学科首页   官方微博 | 高级检索  
     检索      


An historical empirical line method for the retrieval of surface reflectance factor from multi-temporal SPOT HRV,HRVIR and HRG multispectral satellite imagery
Authors:Barnaby Clark  Juha Suomalainen  Petri Pellikka
Institution:1. Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, FIN-00014, Helsinki, Finland;2. Department of Remote Sensing and Photogrammetry, Finnish Geodetic Institute, Geodeetinrinne 2, P.O. Box 15, FIN-02431, Masala, Finland
Abstract:SPOT satellites have been imaging Earth's surface since SPOT 1 was launched in 1986. It is argued that absolute atmospheric correction is a prerequisite for quantitative remote sensing. Areas where land cover changes are occurring rapidly are also often areas most lacking in situ data which would allow full use of radiative transfer models for reflectance factor retrieval (RFR). Consequently, this study details the proposed historical empirical line method (HELM) for RFR from multi-temporal SPOT imagery. HELM is designed for use in landscape level studies in circumstances where no detailed overpass concurrent atmospheric or meteorological data are available, but where there is field access to the research site(s) and a goniometer or spectrometer is available. SPOT data are complicated by the ±27° off-nadir cross track viewing. Calibration to nadir only surface reflectance factor (ρs) is denoted as HELM-1, whilst calibration to ρs modelling imagery illumination and view geometries is termed HELM-2. Comparisons of field measured ρs with those derived from HELM corrected SPOT imagery, covering Helsinki, Finland, and Taita Hills, Kenya, indicated HELM-1 RFR absolute accuracy was ±0.02ρs in the visible and near infrared (VIS/NIR) bands and ±0.03ρs in the shortwave infrared (SWIR), whilst HELM-2 performance was ±0.03ρs in the VIS/NIR and ±0.04ρs in the SWIR. This represented band specific relative errors of 10–15%. HELM-1 and HELM-2 RFR were significantly better than at-satellite reflectance (ρSAT), indicating HELM was effective in reducing atmospheric effects. However, neither HELM approach reduced variability in mean ρs between multi-temporal images, compared to ρSAT. HELM-1 calibration error is dependent on surface characteristics and scene illumination and view geometry. Based on multiangular ρs measurements of vegetation-free ground targets, calibration error was negligible in the forward scattering direction, even at maximum off-nadir view. However, error exceeds 0.02ρs where off-nadir viewing was ≥20° in the backscattering direction within ±55° azimuth of the principal plane. Overall, HELM-1 results were commensurate with an identified VIS/NIR 0.02ρs accuracy benchmark. HELM thus increases applicability of SPOT data to quantitative remote sensing studies.
Keywords:Atmospheric correction  Empirical line correction  Reflectance factor retrieval  SPOT
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号