首页 | 本学科首页   官方微博 | 高级检索  
     检索      


TUTORIAL THE PROGRESSIVE ATTENUATION OF HIGH-FREQUENCY ENERGY IN SEISMIC REFLECTION DATA*
Authors:A ZIOLKOWSKI  J T FOKKEMA
Abstract:Seismic reflection data always exhibit a progressive loss of high-frequency energy with time. This effect is partly attributable to irreversible processes such as the conversion of elastic energy into heat (commonly known as absorption), and partly to reversible processes associated with interference between reflected waves arriving at different times. This paper looks only at reversible linear elastic effects at normal incidence and asks the following question: if there were no such absorption, would there still be a progressive loss of high-frequency energy? Using normal incidence and a layered elastic earth model we prove the following results. 1. The normal incidence response of a sequence of plane parallel elastic layers is non-white. 2. The pressure wave reflected by a layer that is thin compared with a wavelength is differentiated with respect to the incident wave. 3. The transmission response of a thin layer is consequently low-pass and the transmission response of a sequence containing many thin layers is very low-pass. 4. The well-known effect of the transport of acoustic energy by peg-leg multiples within thin layers is identical with this low-pass transmission response. 5. It follows that the high frequency energy is reflected back early in the seismogram. 6. By comparison, very low-frequencies are transmitted through the layered sequence easily and are reflected with difficulty. There is probably a lack of low-frequency energy in the reflection seismogram, by comparison with the spectrum of the incident plane wave. It follows that any meaningful evaluation of frequency-dependent absorption in seismic data cannot take place unless the frequency-dependent linear elastic effects are taken into account first.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号