Precambrian Sequence Bordering the Skaergaard Intrusion |
| |
Authors: | KAYS, M. A. GOLES, G. G. GROVER, T. W. |
| |
Affiliation: | Department of Geological Sciences, University of Oregon Eugene, Oregon 97403 |
| |
Abstract: | Archean tonalitic-granodioritic orthogneisses bordering theSkaergaard Intrusion contain widespread boudins and lenses ofgarnet-biotite schist, quartzite, amphibolite, and ultramaficrocks. These rocks are similar to and locally gradational withnarrow intact supracrustal belts in the region. We correlateearliest isoclinal folds in supracrustal belt rocks and in earliesttonalitic-trondhjemitic-granitic (TTG1) orthogneisses with regionallydeveloped (D2) deformation. We also correlate strong foliation(Ssp1) in the supracrustal rocks and banding (Sbgn1) in earliestorthogneisses with D2 deformation which followed and overlappedearliest M1 metamorphism. Ssp1 foliation is in part axial planarwith D2 isoclinal folds transposing compositional and subparallelmetamorphic banding in the hinge areas. Ssp1 assemblages inmetapelites consist of folia of coexisting sillimanite-biotite-quartzand correspond roughly to metamorphism at the second sillimaniteisograd. We correlate syntectonic emplacement of a later generationof orthogneisses (TTG2) with strong D3 shearing-cataclasis associatedwith tectonic intercalation of supracrustal rocks and earliestorthogneisses. The latest metamorphic assemblages (M2) consistof granoblastic and porphyroblastic minerals that overprintSsp1 (M1) foliation and D3 fabrics. These assemblages formedduring largely static regional metamorphism about 2900 Ma agoand are locally aligned with fabric elements of D4 folding. Temperatures during M2 metamorphism equalled or exceeded thestability of biotite-sillimanite-quartz in metapelites and chlorite-orthopyroxene-olivine-spinel-hornblendein ultramafic rocks. Fe-Mg biotite-garnet exchange, and thepressure-dependent garnet-plagioclase-sillimanite-quartz equilibriumassemblage in metapelites yield temperature and pressure estimatesfor M2 metamorphism of 650700?C and 34 kb. Thesedata suggest that M2 assemblages formed as results of dehydrationreactions at water partial pressures that were less than thetotal pressure. The temperature-dependent equilibrium assemblagechlorite-orthopyroxene-olivine-spinel-vapor (+hornblende), adjustedfor observed phase compositions, is consistent with the Fe-Mgbiotitegarnet exchange geothermometer. Rare-earth element, Rb-Sr and Pb-Pb isotopic, and other compositionalcharacteristics of the orthogneisses are generally consistentwith a multiple stage magmatic origin of their protoliths. OlderTTG1 orthogneisses have compositions generally consistent withformation of the magmas parental to their protoliths by partialmelting of garnetiferous source rocks such as eclogite, or lowercrust. Younger TTG2 orthogneisses have compositions that areconsistent with their formation as water-saturated second meltsin equilibrium with a hornblende-rich residuum. Their formationoccurred within a few 107 y after crustal emplacement of TTG1orthogneisses. The source of water for the formation of later(TTG2) melts may have been M2 dehydration reactions deeper withinthe supracrustal pile. |
| |
Keywords: | |
本文献已被 Oxford 等数据库收录! |
|