首页 | 本学科首页   官方微博 | 高级检索  
     


The impact of deformation on vortex development in a baroclinic moist atmosphere
Authors:Na Li  Lingkun Ran  Shouting Gao
Affiliation:1. Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China
2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, 100081, China
Abstract:A mathematical relation between deformation and vertical vorticity tendency is built by introducing the frontogenesis function and the complete vertical vorticity equation, which is derived by virtue of moist potential vorticity. From the mathematical relation, it is shown that properly configured atmospheric conditions can make deformation exert a positive contribution to vortex development at rates comparable to other favorable factors. The effect of deformation on vortex development is not only related to the deformation itself, but also depends on the current thermodynamic and dynamic structures of the atmosphere, such as the convective stability, moist baroclinicity and vertical wind shear (or horizontal vorticity). A diagnostic study of a heavy-rainfall case that occurred during 20-22 July 2012 shows that deformation has the most remarkable effect on the increase in vertical vorticity during the rapid development stage of the low vortex during its whole life cycle. This feature is mainly due to the existence of an approximate neutral layer (about 700 hPa) in the atmosphere where the convective stability tends to be zero. The neutral layer makes the effect of deformation on the vertical vorticity increase significantly during the vortex development stage, and thus drives the vertical vorticity to increase.
Keywords:deformation   low vortex   vorticity   frontogenesis function
本文献已被 CNKI 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号